Dear all,
The script below
illustrate the problem
Findings: extremely bad lnl
in comparison to --x-12-arima
zero values of the 2 last parameters
and gradients at all iterations
Strangely large scaling factor
Note that --x-12-arima gives
nice pol. roots and excellent Ljung-Box Q'
Also note that with the default $pd for
modtest --autocorr
obviously fails because zero df
open bad_data.gdt #attached
smpl 1 194
# note strange zeros for b[y_one] and b[y_two]
arima 3 0 0; 1 0 0; diff_series const y_one y_two
lnl1 = $lnl
modtest --autocorr 5
# compare
arima 3 0 0; 1 0 0; diff_series const y_one y_two --x-12-arima
lnl2 = $lnl
modtest --autocorr 5
eval lnl2 - lnl1
arima 3 0 0; 1 0 0; diff_series const y_one y_two --verbose
# Scaling y by 2.18989e+018 !!!
/*
Iteration 1: loglikelihood = -8292.74884180
Parameters: -2.8152e+016 0.65496 -0.090036 -0.16211 -0.44328 0.00000
0.00000
Gradients: 4.7608e-018 4.0881 1.2538 3.3817 -1.2644 0.00000
0.00000 (norm 7.59e-001)
Iteration 2: loglikelihood = -8292.71644305 (steplength = 0.0016)
Parameters: -2.8152e+016 0.66150 -0.088030 -0.15670 -0.44531 0.00000
0.00000
Gradients: 4.5624e-018 1.3507 -1.5003 1.0847 -1.4772 0.00000
0.00000 (norm 5.32e-001)
*/
#etc. etc
Oleh