
The representation of missing values in gretl

Allin, 2018-07-23

I’ll start with an account of a few pertinent facts.

1. For a long time, gretl has represented “missing value” (“NA” for short) by DBL MAX, the largest
double-precision (8-byte) floating point number, approximately 1.7977×10308. In this respect
gretl follows a long-standing tradition in econometric software of choosing some particular
numerical value, unlikely to be confused with valid data, to represent NA. Within that class
DBL MAX is a good choice since there’s zero probability that this could represent a valid value
of a socio-economic variable.

2. Double-precision floating point numbers are known in C parlance simply as “doubles”, and
we’ll use that name below. In gretl, floating point values are always stored as doubles.

3. The C library recognizes a few bit-patterns in doubles as special (not regular numerical values).
Basically there are three such cases: nan (“not-a-number”), inf (positive infinity) and -inf
(negative infinity). These can arise as the result of certain calculations. For example, log(0)
produces -inf, log(-1) produces nan, and DBL MAX * 10 produces inf. The reasons behind
these results should be fairly obvious.

4. The C library follows well-defined (IEEE) rules in handling such special values. Any arithmeti-
cal operation with nan as an operand, or mathematical function call with nan as argument,
will yield nan as result. You can flip the sign of an infinity (e.g. by multiplying by −1) but
you can’t “tame” it; multiplying inf by zero gives nan.

Against that background, a question: Would we be better off representing NA by nan in gretl? We’ll
consider some possible drawbacks and some advantages.

Here’s the main argument against. There’s surely a conceptual distinction to be made between a
“missing value” that arises because an observation wasn’t made, a record was lost, or whatever,
and a “not-a-number” arising from an invalid calculation such a trying to take the logarithm of a
negative number. Equating NA and nan would efface that distinction. In addition, while the IEEE
rules for propagating nan in calculation are very close to those we would wish to use in propagating
NA—just about every calculation involving NA should presumably yield NA, or perhaps nan—there’s
arguably one exception. If we interpret NA as simply an unobserved value, then NA * 0 should be
zero, but (reasonably enough) nan * 0 = nan.

We’ll return to the last point below, but for the moment we switch to the main arguments in favour
of redefining gretl’s NA as nan, of which there are two.

1. If we’re willing to set aside the case for NA * 0 = 0, one obvious advantage of treating NA as
nan is that we then get the IEEE propagation rules “for free”. Otherwise we need to set up
our own (mostly parallel) propagation rules for NA. And we have to be very careful never to
pass NA (= DBL MAX) to any C-library operator or function, on pain of getting totally spurious
results. (For example, DBL MAX/100 is a perfectly fine numerical value so far as the C library
is concerned, but a meaningless one if DBL MAX is standing in for NA.)

1



2. The second argument is really just an extension of the last point. As you might expect,
we do have our own propagation rules for NA—applying to calculation involving series and
scalars—and we are in fact very careful not to pass NA to C-library calculations.1 If this were
just a one-time coding cost that’s already been borne, it wouldn’t be much of an issue. But
it’s more than that. A common feature of today’s hansl coding is traffic between series and
matrices: a dataset holds series, but complicated calculations often involve matrices, and we
want to be able to shuttle data between these two representations as seamlessly as possible.
But many of gretl’s matrix computations are farmed out to LAPACK/BLAS and we cannot
“reach into” those calculations and ensure correct propagation of NA (= DBL MAX). Therefore,
whenever we transfer data from series into matrices we have to check for NA and replace with
nan—an ongoing and quite expensive run-time cost.

We can now reassess the argument canvassed above, contra the DBL MAX to nan switch. The case
was that, in principle, “genuine” missing values and “not-a-number” should be treated as distinct.
This might have some force if gretl maintained the distinction consistently, but in fact we don’t.
For reasons that are certainly debatable but which seemed “good enough” at the time, we decided
not to allow nan and infinities in series and scalar values: whenever these arise in the course of
calculation they are mapped to NA. This also means that when the results of matrix calculation are
carried back to series, we need to perform the inverse operation of the NA → nan transformation
mentioned above.

So where’s all this going? I see three possibilities:

• Leave things as they are. After all, nobody has recently expressed dissatisfaction with the
status quo.

• If we think it’s really important, make an effort to respect the NA versus nan distinction more
rigorously than hitherto (e.g. stop mapping the results of invalid calculation onto NA). I don’t
think this would be very easy.

• Redefine NA to nan, thereby saving a non-trivial run-time cost and permitting the removal of
a special layer of NA-handing in libgretl.

Jack and I discussed the third option earlier this summer and I think we both favour it. I’ve
experimented a bit and I’m fairly confident it would not be a disruptive change.

1Though every now and then a bug pops up where we’ve failed to prevent this!

2


