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Abstract 

We evaluate the effectiveness of placing microchips on the bags for the curbside collection in 

reducing the unsorted urban solid waste and increasing the fraction recycled. The microchip 

allows the waste collection company to identify the users that left the bags on the curb and 

check whether they properly sorted the waste. Our study is carried out in the Italian province 

of Macerata (Marche, Italy), where the bag microchips were introduced only in some 

municipalities in 2013. Exploiting monthly information on waste collection and natural 

experiment methods, we find that, two years after the programme start, the bag microchip 

increased the fraction recycled by 3-4.5 percentage points and decreased the monthly unsorted 

waste by 1-2 kilograms per capita. 
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Microchip Bags and Waste Sorting†

Matteo Picchio

1 Introduction

In the last decades, the European Union has been attentive to environmental issues with
the implementation, application, and enforcement of EU waste legislation. Although mu-
nicipal waste is a small fraction of the total waste generated in the EU (approximatively
7%–10%), the EU legislator (EU, 2018) has had a clear focus on municipal waste man-
agement as a key element for waste prevention.1 The municipal solid waste is amongst
the most complex ones to manage, as it presents tangled challenges, with a variety of
administrative, economic, and social problems. An efficient and effective management of
this waste stream is therefore commonly accompanied by better performances in overall
waste management (Malinauskaite et al., 2017). The European Waste Framework Direc-
tive established that by 2020 the fraction recycled of municipal waste shall be increased
to a minimum of overall 50% by weight. The Circular Economy Package, among other
ambitious targets, set new municipal-waste-recycling targets for the subsequent years. By
2025 at least 55% of municipal waste by weight will have to be recycled, 60% by 2030,
and 65% by 2035 (EU, 2018, Art. 1(12)).

To cope with the direction and targets set by the EU and the implied modifications
of national legislations, the municipal waste management, often organized at regional or
local level, has followed different strategies. However, some converging trends are clearly
identifiable, like the introduction of curbside (door-to-door, DtD) collection programmes,
which require users to separate their waste at home.2 The curbside collection is financed

†We thank Roberto Esposti for his comments and suggestions.

1The European Waste Framework Directive (EU, 2008) and the Circular Economy Package, which
includes the revision of legislative proposal on waste with Directive (EU) 2018/851 (EU, 2018), set clear
and long-term targets for municipal waste management and recycling.

2See Knickmeyer (2020) and Varotto and Spagnolli (2017) for recent literature reviews on the main

1



by either flat-fees or pay-as-you-throw (PAYT) pricing systems. The latter makes users’
cost an increasing function in the unsorted waste produced, generating and incentive to
reduce the unsorted waste and increase the fraction recycled. A number of studies esti-
mated the impact of PAYT pricing systems on household recycling behaviour. Empirical
findings generally point to a significant positive effect on recyclable waste and a nega-
tive impact on the amount of unsorted waste (Allers and Hoeben, 2010; Bucciol et al.,
2015; Bueno and Valente, 2019; Carattini et al., 2018; Dijkgraaf and Gradus, 2004, 2009;
Ferrara and Missios, 2005; Gellynck and Verhelst, 2007; Kinnaman and Fullerton, 2000;
Usui, 2008; Yang and Innes, 2007).3

Apart from the costs of being technological equipped to adopt a unit pricing system,
the PAYT pricing system could be affected by a further limit: it might generate the in-
centive to waste tourism or illicit waste dumping or burning (Fullerton and Kinnaman,
1995; Kinnaman and Fullerton, 2000; Kinnaman, 2006). Bucciol et al. (2015) found that
in the province of Treviso (Veneto, Italy) PAYT induced illegal dumping, although only
limited to those municipalities in which the PAYT system was introduced when the frac-
tion recycled was already high. The assessment of the effectiveness of the PAYT system
is further complicated by its frequent coexistence with DtD collection programmes. It is
therefore not easy to distinguish the effect of the former from the latter. Bucciol et al.
(2015) disentangled the effect of the PAYT system from the one of DtD collection. They
found that, whilst the impact of the DtD collection is rather flat but increasing with respect
to the initial level of fraction recycled, the effect of the PAYT system negatively depends
on it. If a municipality starts from a fraction recycled of 60%, the DtD programme is able
to increase it further, while the introduction of the PAYT does not modify it.

The aim of our paper is inspired by the latter result in Bucciol et al. (2015). We assess
the effectiveness of a programme started in 2013 in the province of Macerata (Marche,
Italy) aimed at further improving the fraction recycled and reducing the unsorted waste.
The programme consisted in the insertion of microchips on the bags for the DtD col-
lection. The microchip contains information about the user. Hence, it allows the waste
collection company or the local police to identify the users that left the bags on the curb,
check whether they properly sorted the waste, and fine the users not complying with the

social factors and psychological intervention strategies influencing household recycling behaviour.
3The meta-analysis in Bel and Gradus (2016) clarifies that the effectiveness of the unit pricing system

depends crucially on the unit chosen for the computation of the fee: weight-based systems generate the
largest effect on waste quantities, whereas volume-based systems (i.e. the bin- and bag-based systems) are
not effective.
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mandatory rules for recycling. It was introduced in municipalities with DtD collection, a
flat-fee pricing system, and an already high level of fraction recycled, on average above
70%. Differently from the province of Treviso in which some municipalities experienced
the introduction of a PAYT pricing system (Bucciol et al., 2015), hence an economic in-
centive, in the province of Macerata the waste management company opted for fines (or
the threat of punishment) for those users not complying with the mandatory recycling
rules. All in all, this choice is coherent with the results in Bucciol et al. (2015), if they
can be generalized to other Italian provinces: given the already large commitment to re-
cycling in the province of Macerata and the risk of encouraging illicit waste dumping and
burning, the switch to a PAYT system could have been unfruitful or detrimental.

Our contribution to the literature is twofold. First, we show that also where the frac-
tion recycled is already high, there is still room for improvement using the ‘stick’, i.e.
a simple system to potentially identify users not complying with the recycling rules and
fine them. This was implemented without a relevant change in the organization of the
waste management and without a big risk of illicit dumping or burning, which could in-
stead characterise the shift to a unit-based pricing system. Second, we do it by using an
administrative and detailed dataset on waste collection at municipality level and robust
natural experiment econometric methods allowing for time-varying effects of unobserv-
ables. The estimated results are therefore interpretable as causal effects of the microchip
bag programme under weak assumptions.

The set-up of our paper is as follows. Section 2 describes the waste management in
the area under analysis and the main features of the microchip bag programme. Section
3 presents the dataset and the sample used for the empirical analysis. Section 4 explains
the econometric models and the strategies for the identification of the causal effect of the
programme. Section 5 reports and comments on the main findings. Section 6 concludes.

2 Framework

In the province of Macerata, the waste collection, treatment, and disposal is managed by
COSMARI (Consorzio Obbligatorio SMAltimento RIfiuti - Compulsory Waste Disposal
Consortium), which is a public company owned by the municipalities of the province of
Macerata and covering about 320,000 inhabitants.

As common in Italy until about three decades ago, users (i.e. households, stores, etc.)
were still taking mixed waste to big collective bins located in public streets. At the be-
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ginning of the 1990s, COSMARI assigned the management of sorted waste to private
companies and the usual collective bins for unsorted waste were flanked by bins for sep-
arate waste collection. After some years, the fraction recycled was still very low: in 1997
it was about 3% (COSMARI, 2012, p. 29). In 1997, Legislative Decree 22/1997 was
passed at national level to comply with the European Union directives and established a
completely new regime (Bertossi et al., 2000) in terms of recycling attention and objec-
tives. Moreover, since the beginning of 1997, COSMARI took control of the management
of sorted waste and, in a few years, the fraction recycled reached quickly 24% in 2004.

Since the profile of the fraction recycled flattened (in 2006 it was still 26%), in 2007
COSMARI started a curbside collection programme in 7 municipalities and, by 2012,
in almost all the municipalities the waste collection based on communal bins on public
streets were replaced by the DtD system. With this new system, users have to sort dif-
ferent materials in bags that are freely distributed in the city hall or in other distribution
points, like supermarkets. The bag for plastic, aluminium and metal cans, the bag for
paper and cardboard, and the bag for unsorted residual waste are collected DtD in specific
time slots and days of the week. Organic waste, glass, and diapers and alike are separately
sorted in three different (mostly small, 240 lt) communal bins located in public streets.
All the municipalities that moved to the waste collection on the curb experienced an im-
mediate increase in the fraction recycled. At provincial level, already in 2012 the fraction
recycled scored 59.3%, largely above the 50% target to be reached by 2020 according to
EU (2008) and the national average of 40%.4 The municipalities that shifted to the curb-
side collection went through a different tariff system for the treatment and disposal of the
unsorted waste. For example, while in 2014 the municipalities with the curbside collec-
tion were asked to pay e174.40 per tonne of unsorted waste, those without the curbside
collection paid e223.00 per tonne. Although this difference in charging municipalities,
the way in which municipalities in turn charge their users for waste collection services
has not changed and remained characterised by a fixed annual fee per user.

Then, with the aims of increasing the quality and the quantity of the fraction recy-
cled and of laying the foundations for an eventual shift to the pay-as-you-throw system,
COSMARI launched in the second half of 2013 the bag microchip programme in 9 mu-
nicipalities already equipped with the curbside collection.5 Microchips have been indeed

4These figures are gathered from the national waste register of Istituto Superiore per la Protezione e la
Ricerca Ambientale (ISPRA) and retrieved on 05/11/2020 from https://www.catasto-rifiuti.isprambiente.it.

5The capital of the province, Macerata, joined COSMARI in January 2014 and in March 2014 was
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incorporated in the bags for the collection of plastic, aluminium and metal cans and in
those for the unsorted waste. When the user gathers her/his rolls of bags from a distribu-
tion point, each roll of bag is coupled with the corresponding user through the microchip.
Hence, the microchips stuck on the bags allow COSMARI or the local police to trace the
users that left the bags on the curb and check whether they properly sorted the waste and
they did it in the right day.

3 Data

The empirical analysis exploits data from two sources. The main source is the monthly
information at municipality level published by COSMARI in its website and containing
information on waste collection disaggregated by different types of materials.6 We col-
lected monthly information from July 2010 until the first semester of 2016, so as to have
6 years of data, 3 years before the introduction of bag microchips and 3 years after it.
We stopped the data collection after the first semester of 2016, because from August un-
til October 2016 a series of earthquakes devastated many municipalities of Central Italy,
with very important damages also in the province of Macerata. Since the disaster likely
affected the waste collection and sorting behaviours and because inland areas were asym-
metrically damaged by the earthquakes, by stopping the data collection in July 2016 we
avoid the inclusion of spurious components in the effect estimation. We do not use data
before July 2010 as the more we go back in time the higher the number of municipalities
which had not started yet the curbside collection programme, a fundamental pre-requisite
for the subsequent introduction of the bag microchip and therefore for a municipality to
be a valid control.

The second data source is yearly information on municipality characteristics gathered
from Atlante Statistico dei Comuni 2019 (http://asc.istat.it) published by Istat. More in
detail, we collected information from 2010 until 2016 on population, its density, and the
number of tourist bed places. These features could indeed be determinants of the fraction
recycled and of sorting behaviour.

The province of Macerata was divided in 57 municipalities during the period under

the 10th municipality to experience the bag microchip programme, although only limited to the historical
center.

6We retrieved the monthly data on waste collection and disposal from https://www.cosmarimc.it/-
raccolta-differenziata/?m=raccolta-differenziata on September 2019.
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analysis (55 at the time of writing). Before the introduction of the bag microchip, COS-
MARI run two pilot experiments to assess its effectiveness: in 2011 in the municipality
of Petriolo (2,036 inhabitants in that year) and in 2012 in a district of Porto Recanati
(whole population of 11,497 persons in 2012). Because of their particular treatments, we
decided to exclude these two municipalities from the sample. Moreover, the latter is a
highly tourist town, being located on the coast, and displays extremely large increases
in the amount of the per capita unsorted waste in summer, much larger than any other
municipality in the province. By removing it, we delete au outlying unit. The waste man-
agement of Macerata, the capital of the province, and Cingoli was assigned to another
company until the end of 2013. Hence, COSMARI does not have their monthly data
before January 2014. They both displayed in the first months of 2014 the similar steep
increase in the fraction recycled, which is likely due to the change in the company in
charge of the waste management and the introduction of the curbside collection. Because
of the possible confounding effect due to the change in the waste management company
and the contemporaneous shift to the DtD collection, Macerata and Cingoli are removed
from our sample. We also removed Civitanova Marche (40,228 inhabitants in 2012) as
the bag microchips were introduced in June 2013 only in the city centre (about 18.5% of
the total population), leaving peripheral areas with the old system. Furthermore, 8 mu-
nicipalities did not have the curbside collection programme in the years under analysis.
Since the bag microchip can be introduced only if the garbage collection is at the curb
and municipalities without the DtD collection typically have very low and quite different
profiles of the fraction recycled, we removed them from the sample.7 In some other mu-
nicipalities the curbside collection programme started during the period under analysis.
They are included in our sample but only from the month after the one in which the curb-
side collection started. Finally, since the data collected in February 2015 are affected by
several inconsistencies, they are not used in the analysis.8 The final sample is therefore
an unbalanced panel with 31 municipalities at the start of the observed time window (sec-
ond semester of 2010) and 44 municipalities since the second semester of 2014 until July
2016. In total we have 479 semester-municipality observations.

In the econometric analysis, we average the monthly data within semesters. Table 1
reports the name of the treated municipalities and the day in which the treatment started.

7The municipalities removed for this reason are Acquacanina, Bolognola, Castel Sant’Angelo, Fiastra,
Poggio San Vicino, Sefro, Serravalle, and Ussita.

8We contacted the highest management of COSMARI by phone on 20/09/2019 and by e-mail on
20/09/2019 and 14/10/2019 to have clarifications about the data anomaly, but we have received no reply.
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In all the treated municipalities the bag microchip was introduced in the second semester
of 2013. We will denote this semester as t = 1. Table 1 also shows the fraction recy-
cled, the per capita amount of sorted and unsorted waste, the population, the population
density, and the number of tourist beds in 2012, which is the year before the programme
implementation. In 2012, the treated had a lower fraction recycled (73.4% against 75.4%),
about 1 more kilogram (per capita and per month) of both recycled and unsorted waste,
and larger population, population densities, and number of tourist bed places.

Table 1: The timing of bag microchip introduction and pre-treatment characteristics of treated
and untreated municipalities

Monthly unsorted Monthly recycled Population Number of
Fraction waste per capita waste per capita density tourist

Date of recycled in 2012 in 2012 in 2012 Population bed places
Municipality treatment(a) in 2012 (Kg/pop*month) (Kg/pop*month) (pop/km2) in 2012 in 2012

Camerino 25/11/2013 0.675 12.773 26.638 53.103 6,897 1,992
Castelraimondo 30/09/2013 0.743 8.315 24.202 105.686 4,740 566
Loro Piceno 21/10/2013 0.702 9.256 23.089 75.967 2,475 262
Monte San Giusto 28/10/2013 0.746 7.522 22.156 403.743 8,091 109
Recanati 09/12/2013 0.762 8.296 26.683 206.737 21,389 838
San Severino Marche 14/10/2013 0.746 8.906 26.099 66.945 13,004 531
Urbisaglia 21/10/2013 0.764 7.057 23.135 118.329 2,705 114

Treated municipalities – 0.734 8.874 24.572 147.2 8,472 630
Untreated municipalities – 0.754 7.602 23.556 109.7 4,572 330

(a) These dates were retrieved in September 2019 from the press releases of COSMARI website (www.cosmarimc.it).

Table 2 reports summary statistics of the fraction recycled over semesters, before and
after the introduction of the bag microchips and by treatment and control municipalities.
Whereas the treated municipalities had a lower fraction recycled before the programme
(73.3% against 75.4%), after the introduction of the bag microchips the treated municipal-
ities reached 77.6% of fraction recycled, whereas the untreated municipalities remained
stable at about 75%. This is suggestive evidence of a change in the waste sorting be-
haviour in the treated municipalities. However, our treated and control municipalities
are on average somewhat different in terms of pre-treatment waste sorting outcomes and
other characteristics, as shown in Table 1. Different units might have diverging trends in
waste sorting behaviour simply because in the years under analysis a rising concern for
environmental and health issues could have had a stronger impact in terms of waste sort-
ing behaviour in under-performing municipalities, as people living in these municipalities
might have been more sensitive to the environmental and health consequences (Bueno
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and Valente, 2019). Moreover, the adoption itself of the bag microchips could depend on
environmental preferences of voters, leading to a policy endogeneity issue (Besley and
Case, 2000; Kinnaman and Fullerton, 2000; Carattini et al., 2018). In order to identify
the causal effect of the introduction of the bag microchips, we need therefore to disen-
tangle the true effect of the programme from the spurious ones determined by differential
time trends between the treated and the control municipalities. This is the aim of the
econometric analysis that follows.

Table 2: Descriptive statistics of the fraction recycled and per capita
monthly unsorted and recycled waste before and after the bag microchips
(averaged within semesters)

Mean Std. Dev. Minimum Maximum Observations

a) Fraction recycled
All semesters, all municipalities 0.753 0.046 0.594 0.876 479
All semesters, treated 0.755 0.039 0.657 0.811 84
All semesters, controls 0.753 0.048 0.594 0.876 395

b) Fraction recycled before and after bag microchip
Before bag microchip, treated 0.733 0.035 0.657 0.781 42
After bag microchip, treated 0.776 0.031 0.688 0.811 42
Before bag microchip, controls 0.754 0.045 0.636 0.867 178
After bag microchip, controls 0.751 0.050 0.594 0.876 217

c) Monthly unsorted waste per capita (kg/pop)
All semesters, all municipalities 8.052 2.088 3.361 18.391 479
All semesters, treated 8.277 1.850 5.672 13.489 84
All semesters, controls 8.005 2.135 3.361 18.391 395

d) Monthly unsorted waste per capita (kg/pop) before and after bag microchip
Before bag microchip, treated 8.961 1.821 6.494 13.489 42
After bag microchip, treated 7.594 1.629 5.672 12.401 42
Before bag microchip, controls 7.564 1.866 3.361 14.256 178
After bag microchip, controls 8.366 2.273 3.541 18.391 217

e) Monthly recycled waste per capita (kg/pop)
All semesters, all municipalities 24.853 6.452 14.026 94.050 479
All semesters, treated 25.391 2.207 21.409 29.864 84
All semesters, controls 24.738 7.029 14.026 94.050 395

f) Monthly recycled waste per capita (kg/pop) before and after bag microchip
Before bag microchip, treated 24.627 2.058 21.409 27.758 42
After bag microchip, treated 26.154 2.105 22.463 29.864 42
Before bag microchip, controls 23.415 3.868 14.026 34.664 178
After bag microchip, controls 25.824 8.673 14.766 94.050 217
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4 Method

4.1 Empirical framework

Evaluating the impact of placing the microchips on the bags for the curbside on recycling
behaviour is challenging because the treated municipalities might not have been randomly
chosen. Rather, this selection could have been induced by a series of waste generation de-
terminants, many of whom might be unobserved to the data analyst. For example, treated
and untreated municipalities might differ in environmental preferences of voters or/and
in previous recycling performances, generating different propensities in the local author-
ities to find further means to increase recycling. Furthermore, there might be unobserved
time-varying confounders, which could pose a further challenge in credibly identifying
the causal effect of the programme because, if municipalities reacted differently to com-
mon unobserved time-varying shocks, the controls could be bad counterfactuals for the
treated.

To address the endogeneity of the bag microchip introduction, we start with the esti-
mation of the treatment effects using standard two-way fixed-effects difference-in-diffe-
rences (DiD) estimators (Autor, 2003). They require the parallel trend assumption in order
to deliver unbiased estimates of the causal effect, i.e. the treated and controls have parallel
trends in the absence of the treatment. However, time-varying effects of unobservables
may invalidate the identification assumption of DiD, which is based on differencing out
time-constant unobserved heterogeneity.

To capture eventual time-varying effects across municipalities, we next estimate the
programme effect in a model with interactive fixed-effects (Bai, 2009). Interactive fixed-
effects (IFE) models are able to net out time-varying unobserved heterogeneity, without
specifying a particular relationship between the regressors and the unobserved terms.

Finally, we use the synthetic control method (SCM) (Abadie and Gardeazabal, 2003;
Abadie et al., 2010). Differently from the previous two approaches, the SCM exploits a
weighted average of controls for each treated unit. Abadie et al. (2010) proved that it is
a generalization of the DiD approach: whereas the DiD model restricts the effect of con-
founders to be constant in time, the SCM allows the effects of unobserved heterogeneity
to vary with time. Indeed, Gobillon and Magnac (2016) showed that the SCM can be
described as a model with IFE, but it is without bias induced by time-varying unobserved
heterogeneity under stronger assumptions than those required by the standard IFE model:
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the SCM requires convexity arguments and constraints on the supports of factor loadings
and exogenous variables.

The general equation of interest is:

yit = xitβ + ∆it + vit + uit (1)

where:

• yit is the outcome variable for municipality i at time t, with i = 1, . . . , N and
t = −5, . . . , 0, 1, . . . , 6 (t = 1 is the semester in which the treatment started);

• xit is a vector of covariates (population, population density, and number of tourist
bed places) and β the conformable vector of parameters;

• ∆it is the treatment effect of bag microchips at time t;

• vit is unobserved heterogeneity;

• uit is an idiosyncratic error term.

∆it is specified as:

∆it = 1(t = 1 ∧ di = 1)θ1 + 1(t = 2 ∧ di = 1)θ2 + 1(t = 3 ∧ di = 1)θ3

+ 1(t = 4 ∧ di = 1)θ4 + 1(t = 5 ∧ di = 1)θ5 + 1(t = 6 ∧ di = 1)θ6 (2)

where di = 1 if municipality i belongs to the treatment group and 1(·) is the indicator
function which returns 1 if the argument is true and 0 otherwise. The six parameters
θ1, . . . , θ6 are the programme effect over time. We will also estimate a constrained model
in which θ1 = . . . = θ6, i.e. the bag microchip effect is imposed to be constant over time.

By assigning a different specification to vit, we will get a different model, returning
unbiased estimates under different assumptions. In the classical DiD model, the unob-
served heterogeneity is specified as

vit = αi + ξt, (3)

i.e. as additive fixed-effects at unit and time levels. An easy extension is obtained by
adding linear and/or quadratic trends at municipality level, as in Autor (2003) or Wolfers
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(2006). In what follows, we will also present the estimation of the DiD model with a
linear individual trend:

vit = αi + ξt + φi · t. (4)

The unobserved heterogeneity in Equation (3) is not able to capture time-varying ef-
fects across municipalities, i.e. all the municipalities are required to be affected in the
same way by the time effects. The specification in Equation (4) is an attempt to cap-
ture unobservables that might change across municipalities and time in diverse patterns.
However, this is done using a strong parametric approach. In the IFE models (and SCM),
the unobserved heterogeneity is instead flexibly specified, without imposing a particular
relationship between the regressors and the unobserved terms or a particular parametric
form for the interaction between the individual and the time unobserved components:

vit = αi + ξt + f ′tλi, (5)

where ft is a L×1 vector of time effects (or factors) and λi is a L×1 vector of individual
effects (or factor loadings). The former is unobserved common shocks, while the latter
captures municipality-specific reactions to those common shocks.

4.2 Estimation and identification

Two-way fixed-effects difference-in-differences

The DiD model described in Equations (1)–(3) is the usual two-way fixed-effects model
which compares over time a group of treated units and a group of controls not exposed
to the treatment after additively controlling for municipality fixed-effects and time fixed-
effects. Hence, it can be estimated using Ordinary Least Squares (OLS) after including a
full set of municipality and time indicators among the covariates to recover the additive
component in Equation 3.

In the standard DiD model, some assumptions must be satisfied in order to deliver
unbiased estimates of the programme effects. First, the common trend assumption must
be satisfied: treated and controls must experience the same time trends in the absence of
the treatment. In our framework, this means that in the DiD model we assume that those
municipalities where the bag microchip was introduced would have experienced a trend in
the outcome variable parallel to the trend of the control municipalities if the bag microchip
had not been introduced. Second, there should not be endogenous selection on transitory
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shocks, implying that there should not be unobserved time-varying individual-specific
heterogeneity affecting the probability of receiving the treatment (Blundell and Costa
Dias, 2009). In our framework, this assumption would be violated if COSMARI decided
(or the local authorities asked COSMARI) to start (or not) the bag microchip programme
on the basis of particular performances of the municipality in terms of garbage collection.

Although it is not possible to formally test these identification assumptions, we can
check whether the data supports the parallel trend hypothesis by looking at the trends
before the programme. To do it, we modified the model in Equations (1)–(3), by enriching
Equation 2 as follows

∆′it = 1(t = −5 ∧ di = 1)θ−5 + 1(t = −4 ∧ di = 1)θ−4 + 1(t = −3 ∧ di = 1)θ−3

+ 1(t = −2 ∧ di = 1)θ−2 + 1(t = −1 ∧ di = 1)θ−1 + 1(t = 0 ∧ di = 1)θ0

+ 1(t = 1 ∧ di = 1)θ1 + 1(t = 2 ∧ di = 1)θ2 + 1(t = 3 ∧ di = 1)θ3

+ 1(t = 4 ∧ di = 1)θ4 + 1(t = 5 ∧ di = 1)θ5 + 1(t = 6 ∧ di = 1)θ6, (6)

where θ0 is innocuously normalized to 0. The parameters θ−5, . . . , θ−1 should all be
(jointly) equal to zero if the trends were parallel before the programme start.

Figure 1 displays the estimation of all the parameters entering into Equation (6). In
panel a) the dependent variable is the fraction recycled, whilst in panel b) it is the monthly
unsorted waste per capita. Both panels clearly show that before the start of the bag mi-
crochip programme, treated and untreated municipalities were sharing the same trends in
both outcomes. The tests for the joint significance of the pre-reform parameters, i.e. with
H0 : θ−5 = . . . = θ−1 = 0, cannot confidently reject the null hypothesis.9

Interactive fixed-effects difference-in-differences

The two-way fixed-effects model is a model with additive fixed-effects which can control
for unobserved confounders that are constant over time. However, it cannot deal with
the presence of effects of confounding unobserved characteristics that vary with time or
space. It might indeed happen that different municipalities have heterogeneous responses
to common shocks and this would generate a violation of the common trend assumption.
The IFE model is able to overcome this problem by allowing eventual time-varying ef-
fects of unobservables to be correlated to all other covariates. Although IFE models allow

9The p-values of the test statistics are reported in the notes of Figure 1.
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Figure 1: Parallel trend tests
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a) Dependent variable: fraction recycled
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b) Dependent variable: unsorted waste per capita (kg/pop) per month

Notes: The points are estimated effects of the bag microchip at different moments since its introduction. They are obtained by
regressing the dependent variable on municipal fixed effects, semester fixed-effects, population, population density, number of
tourist bed places, and the interactions between an indicator equal to 1 for the municipalities that introduced the bag microchips
and leads and lags of the moment of their introduction. The coefficient of the interaction between the indicator equal to 1 for bag
microchip introduction and the lag of order one is innocuously normalized to 0 (and indicated as the semester 0 in the x-axis). The
segments are 95% confidence intervals obtained from the wild cluster bootstrap-t procedure proposed by Cameron et al. (2008),
with clusters at municipality level (9,999 bootstraps using the Webb’s (2014) six-point distribution as weights). A test for the
joint equality to 0 of the pre-programme coefficients shows that the trends between the treated and untreated municipalities were
parallel before the treatment (p-values equal to 0.370 and 0.396, respectively for panel a) and b), using the aforementioned wild
cluster bootstrap-t procedure). The number of municipalities is 44 for a total of 479 observations.
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to relax the parallel trend assumption, we still need to assume that there is no interference
between units (Rosenbaum, 2007; Abadie et al., 2010). In our framework, this would hap-
pen if the bag microchip introduced in one municipality affects the recycling behaviour in
untreated municipalities. We anyway test the no interference assumption in the last part
of Subsection 5.1.

We estimate the IFE model described in Equations (1), (2), and (5) applying the
method in Bai (2009). We used the Stata module regife by Gomez (2015). The number
L of factors is assumed to be known. Formal criteria for choosing the number of factors
(Bai and Ng, 2003; Moon and Weidner, 2015) have been proven not to work well when
the cross-section and temporal correlation in the idiosyncratic terms is large (Onatski,
2010). As in Kim and Oka (2014) we will estimate the model with an increasing number
of factors until the estimated effects become stable. For both the fraction recycled and the
unsorted waste per capita this happens when L = 4.

Synthetic control method

In the SCM, the estimation of the programme effects is based on recreating, for each
treated municipality, the counterfactual using a convex combination of untreated munici-
palities. Let us index by i the i-th treated municipality, with i ∈ D, and let us define as C
the set of size J containing all the untreated municipalities. The treatment effect for the
treated municipality i, for each i ∈ D and t > 0, is approximated by

θ̂it = yit −
∑
j∈C

wijyjt, (7)

where the wij’s are positive weights summing to one which we collect in the J × 1 vector
of weights wi. By averaging across treated municipalities, we get an estimate of θt. The
role of wi is to generate a counterfactual for the treated municipality i through a convex
combination of untreated municipalities. wi is chosen so that the treated municipality
is “well matched” to the untreated municipalities on the basis of a linear combination
of pre-treatment outcomes and observed determinants of the dependent variable. Let us
define Zi theK×1 predictor vector composed by the linear combinations of pre-treatment
outcomes and covariates of the treated municipality i, and Z0 the K × J matrix in which
each column is the counterpart of Zi for each untreated municipality. The choice of
weights in wi is such that they minimize some distance ||Zi − Z0wi||. More in detail,
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given a K × K symmetric and positive semidefinite matrix Vi, wi is chosen so as to
minimize ||Zi − Z0wi||Vi

=
√

(Zi − Z0wi)′Vi(Zi − Z0wi). We pick Vi as suggested
by Abadie et al. (2010): the choice is data driven and such that the prediction error of
the pretreatment outcome between the treated and the synthetic control is minimized.
We include in Zi and Z0 the following predictor variables averaged over the pretreatment
period: population, population density, the number of tourist bed places, fraction recycled,
and the unsorted waste per capita. The estimation is performed using the Stata package
synth_runner by Galiani and Quistorff (2017).

As mentioned in Subsection 4.1 and proven by Gobillon and Magnac (2016), the
SCM requires convexity arguments and constraints on the supports of factor loadings
and exogenous variables. More in detail, the support of exogenous variables and factor
loadings of the treated units should be a subset of the support of exogenous variables and
factor loadings of the untreated units, with the latter support being convex and bounded.
If this is not the case, the synthetic control is not a valid counterfactual: the SCM is based
on an extrapolation, as it projects exogenous variables and factor loadings onto a convex
set to which they do not belong, generating a bias.

5 Results

5.1 Programme effect

Table 3 displays the estimation results of the microchip bag programme using the differ-
ent methods exposed in the previous section. In panel (a), the dependent variable is the
fraction recycled, whilst in panel (b) it is the monthly unsorted waste per capita. Model
(1) reports the results from the usual two-way fixed-effects DiD. Model (2) differs from
Model (1) because it also includes linear time trends at municipality level. Model (3) is
the IFE DiD approach. Finally, Model (4) reports the findings from the SCM. In the first
line of each panel, we report the effect over the whole post-intervention period, assuming
therefore that the effect is constant over time. The remaining lines display the effect of
the bag microchip introduction over semesters since the start of intervention. Finally, at
the bottom of both panels we report the test for the parallel trend assumption for Mod-
els (1) and (2), since this is an identification assumption in the classical DiD approach.
The parallel trend test assesses the joint equality to 0 of the estimated coefficients of pre-
programme indicators. In Figure 1 we have already visualized the parallel trends before
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the intervention for the two-way fixed-effects DiD. Here, we report the formal test also for
the model that further includes linear time trends at municipality level. Since we cannot
confidently reject the null hypothesis, these tests support the validity of the parallel trend
assumption for both the outcome variables in both specifications.

Table 3: Results for the fraction recycled and monthly unsorted waste per capita (kg/pop)

(1) (2) (3) (4)
DiD DiD IFE-DiD SCM

Wild cluster Wild cluster
bootstrap bootstrap Clustered Adjusted

Coeff. p-value(a) Coeff. p-value(a) Coeff. p-value(b) Coeff. p-value(c)

a) Dependent variable: Fraction recycled
Estimate over the 6 semesters after programme implementation

θ1 = θ2 = · · · = θ6 0.040*** 0.002 0.037*** 0.003 0.025*** 0.000 0.031(d) –
Estimate by semester

θ1 0.022*** 0.001 0.025*** 0.001 0.015*** 0.000 0.020*** 0.000
θ2 0.050*** 0.002 0.052*** 0.001 0.045*** 0.001 0.040*** 0.000
θ3 0.048*** 0.002 0.050*** 0.001 0.044*** 0.001 0.039*** 0.000
θ4 0.039*** 0.001 0.043*** 0.002 0.032** 0.026 0.027*** 0.000
θ5 0.038*** 0.002 0.044*** 0.003 0.033*** 0.008 0.030*** 0.000
θ6 0.040*** 0.003 0.045*** 0.003 0.031** 0.017 0.030*** 0.000

Placebo test parallel trend assumption:(e)p-value for
H0 = δ0 = δ−1 = . . . = δ−4 = δ−5 = 0 0.370 0.421 – –

b) Dependent variable: Unsorted waste per capita per month (kg/pop)
Estimate over the 6 semesters after programme implementation

θ1 = θ2 = · · · = θ6 -1.807*** 0.001 -1.326*** 0.000 -1.051*** 0.000 -1.302(d) –
Estimate by semester

θ1 -1.284*** 0.001 -0.930*** 0.002 -0.814*** 0.000 -0.624*** 0.000
θ2 -1.726*** 0.002 -1.227*** 0.008 -1.579*** 0.000 -1.456*** 0.000
θ3 -2.242*** 0.001 -1.580*** 0.002 -1.281*** 0.001 -1.626*** 0.000
θ4 -1.787*** 0.001 -0.972** 0.046 -1.251*** 0.008 -1.449*** 0.000
θ5 -2.197*** 0.002 -1.205** 0.032 -1.008* 0.093 -1.548*** 0.000
θ6 -1.589*** 0.002 -0.433 0.472 -1.066** 0.024 -1.109** 0.000

Placebo test parallel trend assumption:(e)p-value for
H0 = δ0 = δ−1 = . . . = δ−4 = δ−5 = 0 0.396 0.529 – –

Municipality fixed-effects Yes Yes Yes –
Time fixed-effects Yes Yes Yes –
Municipalities × linear time trends No Yes No No
Municipalities 44 44 44 38
Observations 479 479 479 380

Notes: *** Significant at 1%; ** significant at 5%; * significant at 10%. The regressors for the estimation of the DiD equations in models (1)-(3) are: population, its density,
number of tourist bed places, and full set of dummies capturing time fixed effects and municipality fixed effects. The predictor variables in the SCM are: fraction recycled, unsorted
waste per capita, population, population density, and number of tourist bed places averaged over the entire pre-intervention period.

(a) The wild cluster bootstrap p-values are obtained from the wild cluster bootstrap-t procedure proposed by Cameron et al. (2008), with clusters at municipality level (9,999
bootstraps using the Webb’s (2014) six-point distribution as weights).

(b) p-values are robust to heteroskedasticity and within-municipality correlation.
(c) The adjusted p-values are based on the estimates of placebo effects by implementing the SCM to each potential control in our sample, similarly to computation of permutation-

based p-values (Cavallo et al., 2013). Inference is adjusted by standardising the placebo effects by the corresponding pretreatment match quality as suggested by Galiani and
Quistorff (2017).

(d) Average of the six estimates per each semester after bag microchip introduction.
(e) As in Autor (2003), we include in Equation (2) further indicator variables equal to 1 if the microchip is introduced from 1 to 6 semesters in the future and we test whether the

associated coefficients are jointly equal to 0. If the trend between treated and controls is parallel before the bag microchip introduction, the coefficients of these further indicator
variables should indeed be jointly equal to zero. The joint tests of significance are obtained from the wild cluster bootstrap-t procedure.

The estimated effects reported in Table 3 are very stable and highly statistically sig-
nificant across models and estimation strategies. The effect in the first semester is always
less strong than later on. This is due to the partial treatment in the initial semester: as
Table 1 shows, the programme started in the second half of the semester. The effect is
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therefore artificially diluted because, for a part of the first semester imputed to the post-
intervention period, the treated municipalities had not yet been treated. Later the effect
becomes soon more relevant and stable over time. In the last semesters of the observed
post-intervention period, the introduction of bag microchips significantly increased the
fraction recycled by about 3.0-4.5 percentage points, depending on the estimator used. In
terms of unsorted waste, this translated into a reduction of about 1-2 kilograms per capita
per month.

Figure 2: Impact of bag microchip introduction using SCM
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c) Effect of bag microchip on fraction recycled
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d) Effect of bag microchip on unsorted waste

Notes: The predictor variables are fraction recycled, unsorted waste per capita, population, population density, and number of
tourist bed places averaged over the entire pre-intervention period.

Figure 2 graphically reports the estimation results from the SCM. It shows in the
graphs at the top the evolution over time of the average fraction recycled and unsorted
waste for the treated municipalities and the synthetic controls. The graphs at the bottom
display the average effect across the treated municipalities. These graphs clearly pinpoint
the similar and overlapping profiles of the outcome variables between the treated and the
synthetic units before the programme starts. They also evidently visualize the divergent
patterns once the bag microchips are introduced.
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Finally, an implicit assumption for the identification strategy used in all the pro-
posed estimators is that there should not be interference between units (Rosenbaum, 2007;
Abadie et al., 2010): in our framework the introduction of bag microchips in one munic-
ipality should not affect the recycling behaviour of users in untreated municipalities, for
example in neighbouring municipalities. In untreated municipalities close to the treated
ones, citizens could have indeed become aware of the effort of the waste collector to
improve the quantity and the quality of the fraction recycled: the launch of the bag mi-
crochips was accompanied by communication campaigns that might have crossed the
borders of the treated municipalities and impacted on the recycling behaviour of users
in neighbouring municipalities. To rule out the possibility that our estimated effects
are biased because of interference between units, we re-estimated the classical DiD and
IFE-DiD models after removing from the sample the 7 municipalities where the bag mi-
crochips were introduced and by redefining as treated units those 21 municipalities that
share the borders with the municipalities with the bag microchip programme.10

Figure 3: Municipalities used in the test for spatial interference between units

Municipalities with microchip but
deleted from original sample (3)
Municipalities with microchip (7)
Neighbouring municipalities (21)
Not neighbouring municipalities (16)
Municipalities without microchip but
deleted from original sample (10)

Notes: In the test for spatial interference, the municipalities in blue are treated and those in red are controls.

Figure 3 visually clarifies that in running the test for interference between units we
use the municipalities in blue as the new treated units, since they share the borders with

10We do not use the SCM in this robustness test as the SCM is well suited for comparative case studies
where one unit or a little number of units are treated. Here we have 21 treated municipalities and 16 controls.
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Table 4: Test for spatial interference between units

(1) (2) (3)
DiD DiD IFE-DiD

Wild cluster Wild cluster
bootstrap bootstrap Clustered

Coeff. p-value(a) Coeff. p-value(a) Coeff. p-value(b)

a) Dependent variable: Fraction recycled
Estimate over the 6 semesters after programme implementation

θ1 = θ2 = · · · = θ6 -0.000 0.974 -0.007 0.195 -0.003 0.519
Estimate by semester

θ1 0.000 0.972 -0.006 0.359 -0.001 0.878
θ2 -0.002 0.875 -0.020** 0.020 -0.009 0.460
θ3 0.006 0.602 -0.015 0.298 -0.001 0.942
θ4 0.000 0.978 -0.024 0.174 -0.007 0.613
θ5 -0.009 0.433 -0.035 0.109 -0.009 0.597
θ6 0.003 0.824 -0.026 0.269 0.002 0.913

b) Dependent variable: Unsorted waste per capita per month (kg/pop)
Estimate over the 6 semesters after programme implementation

θ1 = θ2 = · · · = θ6 0.092 0.801 0.127 0.615 0.129 0.595
Estimate by semester

θ1 -0.149 0.642 -0.028 0.937 -0.029 0.919
θ2 0.676 0.107 0.922** 0.032 0.260 0.440
θ3 -0.404 0.417 -0.007 0.988 -0.106 0.851
θ4 0.500 0.256 1.055 0.112 0.336 0.533
θ5 -0.308 0.619 0.373 0.657 0.124 0.907
θ6 0.222 0.618 1.012 0.277 0.200 0.727

Municipality fixed-effects Yes Yes Yes
Time fixed-effects Yes Yes Yes
Municipalities × linear time trends No Yes No
Municipalities 37 37 37
Observations 395 395 395

Notes: *** Significant at 1%; ** significant at 5%; * significant at 10%. The regressors are: population, its density, number of
tourist bed places, and full set of dummies capturing time fixed effects and municipality fixed effects.

(a) The wild cluster bootstrap p-values are obtained from the wild cluster bootstrap-t procedure proposed by Cameron et al. (2008),
with clusters at municipality level (9,999 bootstraps using the Webb’s (2014) six-point distribution as weights).

(b) p-values are robust to heteroskedasticity and within-municipality correlation.
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municipalities where the bag microchips were introduced, and the municipalities in red
as controls (16 municipalities). Table 4 displays the estimation results. Both in Model (1)
and in Model (3) no significant effect is detected and the point estimates are all very close
to zero in magnitude. In Model (2), where eventual unobservables that might change
across municipalities and time in diverse patterns is captured using a strong paramet-
ric approach, a significant effect is detected in the semester after the introduction of the
bag microchips. However, since it disappears in the subsequent semesters and it is not
present in Model (3), which represents a more flexible way of dealing with time-varying
unobservables, we conclude that municipalities in the neighbourhood of those which ex-
perienced the introduction of bag microchips had the same recycling behaviours as non-
neighbouring municipalities: this is evidence for no spatial interference between units.

5.2 Discussion

After the pilot schemes in 2011 and 2012 run in two municipalities (see Section 3), COS-
MARI (2013, p. 35) predicted an increase of 6 percentage points in each of the municipal-
ities where the bag microchips would have been introduced. The most robust estimates of
ours, i.e. those coming from the IFE-DiD estimator and the SCM, suggest that the effect
stabilizes at about +3-3.3 percentage points after four semesters. In the most optimistic
scenario, i.e. the estimates from the DiD with linear time trend at municipality level, the
effect is +4.5 percentage points. Hence, the prediction of the waste collector has been too
optimistic and the real effect is 25%-50% lower than expected.

Albeit lower than COSMARI expectations, the magnitude of the effect is remarkable,
considering that the fraction recycled was already very high in the treated municipalities
before the bag microchip programme and that it might be difficult to do better if the
performance is already outstanding. As shown at the bottom of Table 1, the fraction
recycled by the treated municipalities in 2012 was 73.4%. In the same year, the Italian
average was 38.4% and the highest value among European countries, scored by Germany,
was 65.2%.11 Another way of understanding the relevance of the impact is by looking at
the effect relatively to the fraction of municipal waste which in 2012 was not recycled in
the treated municipalities (26.6%): a 3-3.3 (4.5) percentage point decrease is, relatively
to 26.6%, a 11.3-12.4% (16.9%) reduction in the fraction that the treated municipalities

11These figures come from Eurostat and available from https://ec.europa.eu/eurostat/databrowser/view/-
t2020_rt120/.
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were not able to recycle.
If we focus on the impact of the bag microchips on the reduction in the amount of

unsorted waste, we can get an idea of the monetary benefits for the treated municipalities.
The total population in the 7 treated municipalities in 2014, which is the first year of full
treatment, amounted to 59,387 inhabitants. In the same year, the estimated coefficients of
the effect on the unsorted waste (average of the coefficients in semesters t+ 2 and t+ 3)
implies a monthly reduction per capita that spans from 1.404kg in Model (2) to 1.984kg
in Model (1). This implies a yearly reduction in unsorted waste of 16.848-23.808kg per
capita. Multiplying these per capita figures by the 2014 population of the treated munic-
ipalities yields a reduction of unsorted waste in the treated municipalities of 1,001-1,414
tonnes. Since in 2014 these municipalities were charged by the waste collector e171 per
tonne of unsorted waste in January and February and e174.40 per tonne in the remaining
months of the year (COSMARI, 2014, p. 32), they saved about e174,000-246,000 thanks
to the introduction of the bag microchips. In front of a reduction of unsorted waste, one
could expect an increase in the production of sorted waste. However, this is not going to
modify the saving estimation for two reasons. First, the treated municipalities did not ex-
perience an increase in the production of organic waste, for which they were charged (e.g.
e44 per tonne in 2014). In the post-treatment period we did not detect any significant and
relevant change in the production of the organic waste.12 Second, municipalities were not
charged for discarding other recyclable wasted.

However, the microchip bags are more costly than the normal ones. According to
COSMARI (2013, p. 34), they cost on average e0.093 more than normal bags, with an
extra expected expenditure for microchip bags for the 7 treated municipalities of about
e307,000. However, this is a predicted cost as reported in the official budget forecasts
(COSMARI, 2013). In the subsequent actual balance sheets no similar figures are reported
to infer the actual costs supported by each municipality and therefore to understand the
actual extra-costs for microchip bags. Assuming the accuracy of the cost predictions and
sticking to them, the cost of microchips exceeded the benefits by about 25% in the most
optimistic estimate and by about 76% in the least optimistic estimate of the programme
effect. The net yearly cost of the programme is e61,000-133,000, which is not sizeable
if we smooth it over the population involved: e1.03-2.24 per capita.13

12We indeed estimated an average insignificant increase in the monthly organic waste of about 0.1kg per
person from the classic DiD (both with and without municipal linear trends), 0.2kg per person from SCM,
and−0.03kg per person from IFE-DiD. These estimation results are available from the author upon request.

13Since the number of domestic and non-domestic users was around 27,000, the net yearly cost for each
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Nevertheless, these simple computations of direct monetary costs for the involved mu-
nicipalities do not take into account other societal and environmental benefits like, just to
mention some, the reduction of unsorted waste accumulation in landfills, the reduction in
carbon dioxide emissions in case of incineration, and the preservation of natural resources
if the market for recycled material are efficient enough.

6 Conclusions

This paper evaluates the effectiveness of a programme that placed microchips on the bags
for the waste collection on the curb. It was implemented in the province of Macerata
(Marche, Italy) by the waste management company to increase the quality and the quantity
of the fraction recycled and as a step ahead towards the eventual introduction of the pay-
as-you-throw system.

We found that the programme has been able to further increase the fraction recycled,
although already large before the programme start. About 2 years after the programme
start, the bag microchip introduction significantly increased the fraction recycled on aver-
age by 3-4.5 percentage points, depending on the estimator used. This implies a reduction
of the unsorted fraction of 11.3%-16.9%. In terms of mass of monthly unsorted wasted,
the introduction of bag microchip generated a significant decrease of about 1-2 kilograms
per capita. This is a sizeable impact, given that in the year before the programme, in the
treated municipalities the average monthly unsorted waste was 8.9 kilograms per capita.

Our findings are useful for policy-makers and regulators interested in the adoption of
programmes to increase the fraction recycled of urban waste. We show indeed that the bag
microchip programme has been effective in pushing to a higher level the efficacy of the
DtD waste collection. Being based on the risk of punishment, it has proven to be a valid
alternative to systems based on economic incentives, which are often coupled with the
curbside collection, like unit-based pricing systems. Henceforth, the bag microchip sys-
tem could be especially useful when leaving the flat-fee system is not socially/politically
accepted and/or in case of large risks of incurring in the negative side effects of the unit-
based pricing system, as illegal dumping and burning and garbage tourism.

user was about e2.26-4.93.
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