Dear all:
I am a new user of gretl.
I have a question about the MLE example for estimating GARCH on page 118 of the gretl user guide (chapter 17).
I tried the script as shown in what follows ( scalar beta was changed to
0.5):
========the MLE script========================
===========
open djclose
series y = 100*ldiff(djclose)
scalar mu = 0.0
scalar omega = 1
scalar alpha = 0.4
scalar beta = 0.5
mle ll = -0.5*(log(h) + (e^2)/h)
series e = y - mu
series h = var(y)
series h = omega + alpha*(e(-1))^2 + beta*h(-1)
params mu omega alpha beta
end mle
===========================================
and the results are:
=========MLE GARCH results==================================
Using numerical derivatives
Tolerance = 1.81899e-012
Function evaluations: 60
Evaluations of gradient: 14
Model 1: ML estimates using the 2526 observations 80/01/04-89/12/29
ll = -0.5*(log(h) + (e^2)/h)
Standard errors based on Outer Products matrix
PARAMETER ESTIMATE STDERROR T STAT P-VALUE
mu 0.0601181 0.0200846 2.993 0.00276 ***
omega
0.724952 936411 0.000 1.00000
alpha 0.238901 0.00594764 40.167 <0.00001 ***
beta 0.132664 701184 0.000 1.00000
Log-likelihood = -
1370.26
Akaike information criterion (AIC) = 2748.53
Schwarz Bayesian criterion (BIC) = 2771.86
Hannan-Quinn criterion (HQC) = 2757
===========================================
and I found the results are different from what estimated by using the default GARCH estimation ,
i.e., \Model\Time series\GARCH, in which I got (as attached below)
I've tried several combinations of initial values for mu, omega, alpha and, beta. But the results are basically similar.
How can I get closer results from MLE as those from the default GARCH estimation?
Many thanks
Yi-Nung Yang
====the results from the default GARCH =======================================
Function evaluations: 75
Evaluations of gradient: 17
Model 2: GARCH estimates using the 2527 observations 80/01/03-89/12/29
Dependent variable: y
Standard errors based on Hessian
VARIABLE COEFFICIENT STDERROR T STAT P-VALUE
const 0.0700980 0.0184927 3.791 0.00015 ***
alpha(0) 0.0483241 0.0114087 4.236 0.00002 ***
alpha(1) 0.0917793 0.0109744 8.363 <0.00001 ***
beta(1) 0.869729 0.0179295
48.508 <0.00001 ***
Mean of dependent variable = 0.047711
Standard deviation of dep. var. = 1.15563
Unconditional error variance = 1.25546
Log-likelihood = -3568.13
Akaike information criterion (AIC) =
7146.26
Schwarz Bayesian criterion (BIC) = 7175.44
Hannan-Quinn criterion (HQC) = 7156.85
===========================================