Dear Prof. Diaz-Emparanza
I greatly appreciate your taking the time to reply. I looked at the example in the user’s guide, and I see the similarities. A few things still confuse me, however.
Given my system and data, I have r = 2, n =1, and T = 93. My kalman matrices should therefore have the following dimensions:
y (obsy, T x n) 93 x 1
H (obsymat, r x n) 2 x 1 : H = {1 ; 1}
R (obsvar, n x n) 1 x 1 : R = {s2}
F (statemat, r x r) 2 x 2 : F = {1, 0; 0, rho}
Q (statevar, r x r) 2 x 2 : Q = {s1, 0; 0, 0}
Do you agree?
So, using the Gretl code included in the user’s guide as a template, my system would be written:
function matrix local_level (series y)
scalar s1 = 1
scalar s2 = 1
scalar rho = 1
matrix H = {1 ; 1}
matrix F = {1, 0; 0, rho}
matrix Q = {s2, 0; 0, s1}
kalman
obsy y
obsymat H
statemat F
statevar Q
obsvar s1
end kalman --diffuse
mle ll = ERR ? NA : $kalman_llt
F[1,1] = s2
Q[2,2]= rho
ERR = kfilter()
params s1 s2 rho
end mle
return s1 ~ s2 ~ rho
end function
function series loclev_sm (series y, scalar s1, scalar s2, scalar rho)
kalman
obsy y
obsymat H
statemat F
statevar Q
obsvar s1
end kalman --diffuse
series ret = ksmooth()
return ret
end function
matrix Vars = local_level(y)
muhat = loclev_sm(y, Vars[1], Vars[2], Vars[3])
This seems to work up to where the code invokes muhat, then I get “Data error”:
gretl version 1.8.4
Current session: 2009-09-17 12:19
? function matrix local_level (series y)
> > scalar s1 = 1
> scalar s2 = 1
> scalar rho = 1
> > matrix H = {1 ; 1}
> matrix F = {1, 0; 0, rho}
> matrix Q = {s2, 0; 0, s1}
> > kalman
> obsy y
> obsymat H
> statemat F
> statevar Q
> obsvar s1
> end kalman --diffuse
> > mle ll = ERR ? NA : $kalman_llt
> F[1,1] = s2
> Q[2,2]= rho
> ERR = kfilter()
> params s1 s2 rho
> end mle
> return s1 ~ s2 ~ rho
> end function
? function series loclev_sm (series y, scalar s1, scalar s2, scalar rho)
> kalman
> obsy y
> obsymat H
> statemat F
> statevar Q
> obsvar s1
> end kalman --diffuse
> series ret = ksmooth()
> return ret
> end function
? matrix Vars = local_level(y)
Using numerical derivatives
Tolerance = 1.81899e-012
Function evaluations: 46
Evaluations of gradient: 16
Model 19: ML, using observations 2001:10-2009:06 (T = 93)
ll = ERR ? NA : $kalman_llt
Standard errors based on Outer Products matrix
estimate std. error t-ratio p-value
------------------------------------------------------
s1 -1.66438 0.993641 -1.675 0.0939 *
s2 0.238300 0.582520 0.4091 0.6825
rho 8.71710 1.77558 4.909 9.13e-07 ***
Log-likelihood -234.0736 Akaike criterion 474.1471
Schwarz criterion 481.7449 Hannan-Quinn 477.2149
Replaced matrix Vars
? muhat = loclev_sm(y, Vars[1], Vars[2], Vars[3])
Data error
Error executing script: halting
> muhat = loclev_sm(y, Vars[1], Vars[2], Vars[3])
Again, I appreciate your help and look forward to your feedback.