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Chapter 351 

Curve Fitting – 
General 
Introduction 
Curve fitting refers to finding an appropriate mathematical model that expresses the relationship 
between a dependent variable Y and a single independent variable X and estimating the values of 
its parameters using nonlinear regression. An introduction to curve fitting and nonlinear 
regression can be found in the chapter entitled Curve Fitting, so these details will not repeated 
here. Here are some examples of the curve fitting that can be accomplished with this procedure.  
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This program is general purpose curve fitting procedure providing many new technologies that 
have not been easily available. It is preprogrammed to fit over forty common mathematical 
models including growth models like linear-growth and Michaelis-Menten. It also fits many 
approximating models such as regular polynomials, piecewise polynomials and polynomial ratios. 
In addition to these preprogrammed models, it also fits models that you write yourself.  

This routine includes several innovative features. First, it can fit curves to several batches of data 
simultaneously. Second, it compares fitted models across groups using graphics and numerical 
tests such as an approximate F-test for curve coincidence and a computer-intensive randomization 
test that compares curve coincidence and individual parameter values. Third, this routine 
computes bootstrap confidence intervals for parameter values, predicted means, and predicted 
values using the latest computer-intensive bootstrapping technology. 
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Selecting a Preset Model 
Over thirty preset models are available. These models provide a variety of curve shapes. Several 
of the models were developed for quite different physical processes, but yield similar results. We 
now present examples and details of several of the preset models available.  

1. Linear: Y=A+BX  
This common model is usually fit using standard linear regression techniques. We include it here 
to allow for various special forms made by transforming X and Y 

Plot of Y = 1+X
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2. Quadratic: Y=A+BX+CX^2  
The quadratic or second-order polynomial model results in the familiar parabola.  

Plot of Y = 1+X+X^2
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3. Cubic: Y=A+BX+CX^2+DX^3 
This is the cubic or third-order polynomial model.  

Plot of Y = 1+X+X^2+X^3
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4. PolyRatio(1,1): Y=(A+BX)/(1+CX) 
The ratio of first-order polynomials model is a slight extension of the Michaelis-Menten model. It 
may be used to approximate many more complicated models. 

Plot of Y = (5+X)/(1+2*X)
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Plot of Y = (1+X)/(1-X)
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5. PolyRatio(2,2): Y=(A+BX+CX^2)/(1+DX+EX^2) 
The ratio of second-order polynomials model may be used to approximate many complicated 
models. 

Plot of Y = (1+X-X^2)/(1-X+X^2)
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Plot of Y = (1+X+X^2)/(5-X+X^2)
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6. PolyRatio(3,3): Y=(A+BX+CX^2+DX^3)/(1+EX+FX^2+GX^3) 
The ratio of third-order polynomials model may be used to approximate many complicated 
models. However, care must be used when estimating such high-degree models. 

Plot of Y = (1+X+X^2+X^3)/(1-X+X^2-X^3)
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Plot of Y = (1+2*X+X^2+X^3)/(1+X+8*X^2+X^3)
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7. PolyRatio(4,4): Y=(A+BX+CX^2+DX^3+EX^4) / (1+FX+GX^2+HX^3+IX^4) 
The ratio of fourth-order polynomials model may be used to approximate many complicated 
models. However, care must be used when estimating such high-degree models. 

Plot of Y = (1+X^3+X^4)/(1-X^3+X^4)

X

Y

 

Plot of Y = (1+X^3-X^4)/(1+X^3+X^4)
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8. Michaelis-Menten: Y=AX/(B+X) 
This is a popular growth model.  

Plot of Y = X/(1+X)
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9. Reciprocal: Y=1/(A+BX)   
This model, known as the reciprocal or Shinozaki and Kira model, is mentioned in Ratkowsky 
(1989, page 89) and Seber (1989, page 362).  

Plot of Y = 1/(1+X)
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Plot of Y = 1/(4+2*X^2)
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10. Bleasdale-Nelder: Y=(A+BX)^(-1/C) 
This model, known as the Bleasdale-Nelder model, is mentioned in Ratkowsky (1989, page 103) 
and Seber (1989, page 362).  

Plot of Y = (1+X)^(-1)
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Plot of Y = (35-X)^(-1/2)
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11. Farazdaghi and Harris: Y=1/(A+BX^C)   
This model, known as the Farazdaghi and Harris model, is mentioned in Ratkowsky (1989, pages 
99 and 104) and Seber (1989, page 362).  

Plot of Y = 1/(1+X^1)
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Plot of Y = 1/(1+X^2)
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Plot of Y = 1/(1+X^3)
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Plot of Y = 1/(1-X^3)
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12. Holliday: Y=1/(A+BX+CX^2)   
This model, known as the Holliday model, is mentioned in Seber (1989, page 362).  

Plot of Y = 1/(1+X+X^2)
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13. Exponential: Y=EXP(A(X-B)) 
This model, known as the exponential model, is mentioned in Seber (1989, page 327). Note that 
taking the log of both sides reduces this equation to a linear model.  

Plot of Y = EXP(X)
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Plot of Y = EXP(-X)
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14. Monomolecular: Y=A(1-EXP(-B(X-C))) 
This model, known as the monomolecular model, is mentioned in Seber (1989, page 328).  

Plot of Y = 1-EXP(-X)
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Plot of Y = 1-EXP(X)
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15. Three Parameter Logistic: Y=A/(1+B(EXP(-CX)))   
This model, known as the three-parameter logistic model, is mentioned in Seber (1989, page 
330).  

Plot of Y = 1/(1+EXP(-X))
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16. Four Parameter Logistic: Y=D+(A-D)/(1+B(EXP(-CX)))   
This model, known as the four-parameter logistic model, is mentioned in Seber (1989, page 338). 
Note that the extra parameter, D, has the effect of shifting the graph vertically. Otherwise, this 
plot is the same as the three-parameter logistic. 

Plot of Y = .5+.5/(1+EXP(-X))
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17. Gompertz: Y=A(EXP(-EXP(-B(X-C)))) 
This model, known as the Gompertz model, is mentioned in Seber (1989, page 331).  

Plot of Y = EXP(-EXP(-X))
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Plot of Y = EXP(-EXP(X))
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18. Weibull: Y=A-(A-B)EXP(-(C|X|)^D) 
This model, known as the Weibull model, is mentioned in Seber (1989, page 338).  

Plot of Y = EXP(-ABS(X)^2)
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Plot of Y = EXP(-ABS(X)^3)
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19. Morgan-Mercer-Floding: Y=A-(A-B)/(1+(C|X|)^D) 
This model, known as the Morgan-Mercer-Floding model, is mentioned in Seber (1989, page 
340).  

Plot of Y = 1/(1+ABS(X)^2)

X

Y

 

Plot of Y = 1/(1+ABS(X)^(-2))
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20. Richards: Y=A(1+(B-1)EXP(-C(X-D)))^(1/(1-B))   
This model, known as the Richards model, is mentioned in Seber (1989, page 333).  

Plot of Y = 1/(1+EXP(-X))
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Plot of Y = 1/(1+EXP(X))
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21. Logarithmic: Y=B(LN(|X|-A)) 
Plot of Y = LOG(ABS(X))
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22. Power: Y=A(1-B^X) 
Plot of Y = 1-2^X
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Plot of Y = 1+2^X
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23. Power^Power: Y=AX^(BX^C) 
Plot of Y = X^X
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Plot of Y = X^(-X)
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24. Sum of Exponentials: Y=A(EXP(-BX))+C(EXP(-DX))   
Plot of Y = EXP(-X)+EXP(X)
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Plot of Y = EXP(-X)-EXP(X)
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25. Exponential Type 1: Y=A(X^B)EXP(-CX) 
Plot of Y = X*EXP(-X)
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Plot of Y = 1/X*EXP(X)
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26. Exponential Type 2: Y=(A+BX)EXP(-CX)+D 
Plot of Y = (1+(9*X))*EXP(-X)
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27. Normal: Y=A+B(EXP(-C(X-D)^2)) 
Plot of Y = EXP(-X^2)
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28. Lognormal: Y=A+(B/X)EXP(-C(LN(|X|)-D)^2) 
Plot of Y = EXP(-LOG(ABS(X))^2)
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29. Exponential: Y=A Exp(-BX) 
Plot of Y = EXP(-X)
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30. Michaelis-Menten(2): Y=AX/(B+X) + CX/(D+X) 
Plot of Y = X/(1+X)+X/(2+X)
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Y
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31. Michaelis-Menten(3): Y=AX/(B+X) + CX/(D+X) + EX/(F+X) 
Plot of Y = X/(1+X)+X/(2+X)+X/(.1+X)
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32. Linear-Linear: Y=A + BX + C(X-D)SIGN(X-D) 
Common Equation 
Y = a1 + b1X,  X<J 
Y = a2 + b2X,  X³J 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 a1=A+DC b1=B-C  J=D 
C=(b2-b1)/2 D=J  a2=A-DC b2=B+C 

Plot of Y = 1+X+2*(X-2)*SGN(X-2)
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33. Linear-Quadratic: Y=A+BX+CX^2+(X-D)SIGN(X-D)[C(X+D)+E] 
Common Equation 
Y=a1+b1X,    X<=a 
Y=a2+b2X+c2X^2, X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=c2/2  
D=a E=(b2-b1)/2 
a1=A+CD2+DE b1=B-E a=D 
a2=A-CD2-DE b2=B+E c2=2C 

Plot of Y = Linear-Quaratic
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34. Quadratic-Linear: Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] 
Common Equation 
Y=a1+b1X+c1X^2, X<=a 
Y=a2+b2X,  X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=c1/2  
D=a  E=(b2-b1)/2 
a1=A-CD2+DE b1=B-E a=D 
a2=A+CD2-DE b2=B+E c1=2C 

Plot of Y = Linear-Quaratic
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35. Quadratic-Quadratic: Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] 
Common Equation 
Y=a1+b1X+c1X^2, X<=a 
Y=a2+b2X+c2X^2, X>a 

Parameter Identities  
A=(a1+a2)/2 B=(b1+b2)/2 C=(c1+c2)/2  
D=a E=(c2-c1)/2 F=(b2-b1)/2 
a1=A-ED2+DF b1=B-F a=D 
a2=A+eD2-DF b2=B+F 
c1=C-E c2=C+E 

Plot of Y = Quadratic-Quadratic
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36. Linear-Linear-Linear: Y=A+BX+C(X-D)SIGN(X-D)+E(X-F)SIGN(X-F) 
Common Equation 
Y=a1+b1X X<J1 
Y=a2+b2X a1<X<=J2 
Y=a3+b3X X>J2 

Parameter Identities  
A=(a1+a3)/2 B=(b1+b3)/2 C=(b2-b1)/2  
D=J1 E=(b3-b2)/2 F=J2 
a1=A+CD+EF b1=B-C-E J1=D 
a2=A-CD-EF b2=B+C-E J2=F 
a3=A-CD+EF b3=B+C+E 
 

Plot of Y = Quadratic-Quadratic
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37. Gompertz 2: Y=Exp((A/B)(1-Exp(BX))) 
Plot of Y = EXP((4/2)*(1-EXP(2*X)))
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38. Hill: Y=AX^C/(B^C+X^C) 
Plot of Y = X^1.5/(2^1.5+X^1.5)
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39. Sum of 3 Exponentials: Y=A(Exp(-BX))-C(Exp(-DX))+E(Exp(-FX))  
This model is intended for the case when all parameters are positive. Note that the default starting 
values may not work for this model. You should be prepared to try different starting values.  

Plot of Y = 2*EXP(-.9*X)-3*EXP(-2*X)+2*EXP(-6*X)
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Plot of Y = 3*EXP(-.9*X)-3*EXP(-2*X)+2*EXP(-6*X)
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Custom Models 
You are not limited to the preset models that are shown above. You can enter your own custom 
model using standard mathematical notation. The only difference between using a preset model 
and using your own model is that with a preset model the starting values of the search algorithm 
are chosen based on the model. When using a custom model, you will have to set your own 
starting values based on the data you are trying to fit. When you do not specify starting values, 
the program uses all zeros, which may or may not lead to a reasonable solution. 

Confidence Intervals 
Two methods are used to calculate confidence intervals of the regression parameters and 
predicted values. The first method is based on the usual normality and constant variance of 
residuals assumption. When the data follow these assumptions, standard expressions for the 
confidence intervals are used based on the Student’s t distribution. Unfortunately, nonlinear 
regression dataset rarely follow these assumptions. 

The second method is called the bootstrap method. This is a modern, computer-intensive method 
that has only become available in recent years as extensive computer power has become 
available. 

Bootstrap Confidence Intervals 
Bootstrapping provides standard errors and confidence intervals for nonlinear-regression 
parameter, predicted means, and predicted values. The method is simple in concept, but it 
requires extensive computation time. 

Bootstrap confidence intervals are based on the assumption that your sample is actually 
representative of the population. Beginning with this assumption, B samples are drawn (B is over 
1000) of size N from your original sample with replacement. With replacement sampling means 
that each observation may be selected more than once. For each bootstrap sample, the nonlinear-
regression results are computed and stored.  

Suppose you want the standard error and a confidence interval of a regression parameter. The 
bootstrap sampling process provides B estimates of this parameter. The standard deviation of 
these B estimates is the bootstrap estimate of the standard error of the parameter. The bootstrap 
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confidence interval is found by arranging the B values in sorted order and selecting the 
appropriate percentiles from the list. For example, a 90% bootstrap confidence interval for the 
parameter is given by fifth and ninety-fifth percentiles of the bootstrap parameter values.  

The main assumption made when using the bootstrap is that your sample approximates the 
population. Because of this assumption, bootstrapping does not work well for small samples in 
which there is little likelihood that the sample is representative of the population. Bootstrapping 
should only be used in medium to large samples. 

Bootstrap Prediction Intervals 
Bootstrap confidence intervals for the mean of Y given X are generated from the bootstrap sample 
in the usual way. To calculate prediction intervals for the predicted value (not the mean) of Y 
given X requires a modification to the predicted value of Y to be made to account for the variation 
of Y about its mean. This modification of the predicted Y values in the bootstrap sample, 
suggested by Davison and Hinkley, is as follows. 

$ $ *y y ei i r= +   

where is a randomly selected modified residual (see below). By adding the residual we have 
added an appropriate amount of variation to represent the variance of individual Y’s about their 
mean value. 

e  r
*

Modified Residuals 
Davison and Hinkley (1999) page 279 recommend the use of a special rescaling of the residuals 
when bootstrapping to keep results unbiased. Because of the high amount of computing involved 
in bootstrapping, these modified residuals are calculated using 
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Note that there is a different rescaling than Davison and Hinkley recommended. We have used 
this rescaling because it is much quicker to calculate.  

Hypothesis Testing 
When curves are fit to two or more groups, it is often of interest to test whether certain regression 
parameters are equal and whether the fitted curves coincide. Although some approximate results 
have been obtained using indicator variables, these are asymptotic results and little is known about 
their appropriateness in sample samples. We provide a test of the hypothesis that all group curves 
coincide using an F-test that compares the residual sum of squares obtained when the grouping is  

ignored with the total of the residual sum of squares obtained for each group. This test is routinely 
used in the analysis of variance associated with linear models and its application to nonlinear 
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models has occasionally been suggested. However, it is based on naive assumptions that seldom 
occur. 

Because of the availability of fast computing speed in recent years, a second method of hypothesis 
testing, called the randomization test, is now available. This test will be discussed next. 

Randomization Test 
Randomization testing is discussed by Edgington (1987). The details of the randomization test are 
simple: all possible permutations of the group variable while leaving the dependent and independent 
variables in their original order are investigated. For each permutation, the difference between the 
estimated group parameters is calculated. The number of permutations with a magnitude greater 
than or equal to that of the actual sample is counted. Dividing this count by the number of 
permutations gives the significance level of the test.  

The randomization test is suggested because an exact test is achieved without making unrealistic 
assumptions about the data such as constant variance, normality, or model accuracy. The test was 
not used in the past because the amount of computations was prohibitive. In fact, the randomization 
test was originally proposed by Fisher and he chose his F-test because its distribution close 
approximated the randomization distribution.  

The only assumption that a randomization test makes is that the data values are exchangeable under 
the null hypothesis.  

For even moderate sample sizes, the total number of permutations is in the trillions, so a Monte 
Carlo approach is used in which the permutations are found by random selection rather than 
enumeration. Using this approach, a reasonable approximation to the test’s probability level may be 
found by considering only a few thousand permutations rather than the trillions needed for complete 
enumeration. Edgington suggests that at least 1000 permutations by computed. We suggest that this 
be increased to 10000 for important results. 

The program tests two types of hypotheses using randomization tests. The first is that each of the 
estimated model parameters is equal. The second is that the individual fitted curves coincide across 
all groups. 

Randomization Statistics for Testing Parameter Equivalence 
The test statistic for comparing a model parameter is formed by summing the difference between 
the group parameter estimates for each pair of groups. If there are G groups, the test statistic is 
computed using the formula 

BRT i j
j i

G
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−
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Randomization Statistics for Testing Curve Equivalence 
The test statistic for comparing the whole curve is formed by summing the difference between the 
estimated predicted values for each pair of groups at several points along the curve. If there are G 
groups and K equally spaced test points, the test statistic is computed using the formula 
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Data Structure 
The data are entered in two variables: one dependent variable and one independent variable. 
Additionally, you may specify a frequency variable containing the observation count for each row 
and a group variable that is used to partition the data in to independent groups. 

Missing Values 
Rows with missing values in the variables being analyzed are ignored in the calculations. When 
only the value of the dependent variable is missing, predicted values are generated. 

Procedure Options 
This section describes the options available in this procedure. 

Variables Tab 
This panel specifies the variables used in the analysis. 

Variables 

Y (Dependent) Variable 
Specifies a single dependent (Y) variable from the current database. This variable is being 
predicted using the (preset or custom) model you specify. The actual values fed into the algorithm 
depend on which transformation (if any) is selected for this variable. 

Y Transformation 
Specifies a power transformation of the dependent variable. Available transformations are 

Y’=1/(Y*Y), Y’=1/Y, Y’=1/SQRT(Y), Y’=LN(Y), Y’=SQRT(Y), Y’=Y  (none), and Y’=Y*Y 

Care must be taken so that you do not apply a transformation that omits much of your data. For 
example, you cannot take the square root of a negative number, so if you apply this 
transformation to negative values, those observations will be treated as missing values and 
ignored. Similarly, you cannot have a zero in the denominator of a quotient and you cannot take 
the logarithm of a number less than or equal to zero. 

X (Independent) Variable 
Specify the independent (X) variable. This variable is used to predict the dependent variable 
using the model you have specified. This variable is referred to as ‘X’ in the Preset and Custom 
model statements. The actual values used depend on which transformation (if any) is selected for 
this variable. 

X Transformation 
Specifies a power transformation of the independent variable. Available transformations are 

X’=1/(X*X), X’=1/X, X’=1/SQRT(X), X’=LN(X), X’=SQRT(X), X’=X  (none), and X’=X*X 

Care must be taken so that you do not apply a transformation that omits much of your data. For 
example, you cannot take the square root of a negative number, so if you apply this 



351-18  Curve Fitting – General  

transformation to negative values, those observations will be treated as missing values and 
ignored. Similarly, you cannot have a zero in the denominator of a quotient and you cannot take 
the logarithm of a number less than or equal to zero. 

Frequency Variable 
An optional variable containing a set of counts (frequencies). Normally, each row represents one 
observation. On occasion, however, each row of data may represent more than one observation. 
This variable contains the number of observations that a row represents. Rows with zeroes and 
negative values are ignored. 

Group Variable 
This optional variable divides the observations into groups. When specified, a separate analysis is 
generated for each unique value of this variable. Use the Value Label option under the Format tab 
to specify the way in which the group values are displayed. 

Model 

Preset Model 
Select the model that you want to fit.  Select ‘Custom’ to use a model you have entered in the 
‘Custom Model’ box. Whenever possible, use one of the preset models since reasonable starting 
values for the parameters will be calculated for you. The minimum, maximum, and starting 
values of each letter in the preset model are defined in the corresponding MIN START MAX box 
on the Options panel. The preset models available are 
0  Custom  Use the custom model 
1  Y=A+BX  Simple Linear 
2  Y=A+BX+CX^2  Quadratic 
3 Y=A+BX+CX^2+DX^3 Cubic 
4 Y=(A+BX)/(1+CX) PolyRatio(1,1) 
5 Y=(A+BX+CX^2)/(1+DX+EX^2) PolyRatio(2,2) 
6 Y=(A+BX+CX^2+DX^3)/(1+EX+FX^2+GX^3) PolyRatio(3,3) 
7 Y=(A+BX+CX^2+DX^3+EX^4) / 
 (1+FX+GX^2+HX^3+IX^4) PolyRatio(4,4) 
8 Y=AX/(B+X) Michaelis-Menten 
9  Y=1/(A+BX)  Reciprocal  
10 Y=(A+BX)^(-1/C) Bleasdale-Nelder 
11 Y=1/(A+BX^C)  Farazdaghi and Harris 
12  Y=1/(A+BX+CX^2) Holliday 
13  Y=EXP(A(X-B)) Exponential 
14  Y=A(1-EXP(-B(X-C))) Monomolecular 
15  Y=A/(1+B(EXP(-CX)))  Three Parameter Logistic 
16  Y=D+(A-D)/(1+B(EXP(-CX)))  Four Parameter Logistic 
17 Y=A(EXP(-EXP(-B(X-C)))) Gompertz 
18 Y=A-(A-B)EXP(-(C|X|)^D) Weibull 
19 Y=A-(A-B)/(1+(C|X|)^D) Morgan-Mercer-Floding 
20 Y=A(1+(B-1)EXP(-C(X-D)))^(1/(1-B))  Richards 
21 Y=B(LN(|X|-A)) Logarithmic 
22 Y=A(1-B^X) Power 
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23 Y=AX^(BX^C) Power^Power 
24 Y=A(EXP(-BX))+C(EXP(-DX))  Sum of Exponentials 
25 Y=A(X^B)EXP(-CX) Exponential Type 1 
26 Y=(A+BX)EXP(-CX)+D Exponential Type 2 
27 Y=A+B(EXP(-C(X-D)^2)) Normal 
28 Y=A+(B/X)EXP(-C(LN(|X|)-D)^2) Lognormal 
29 Y=A Exp(-BX) Exponential 
30 Y=AX/(B+X) + CX/(D+X) Michaelis-Menten(2) 
31 Y=AX/(B+X) + CX/(D+X) + EX/(F+X) Michaelis-Menten(3) 
32 Y=A + BX + C(X-D)SIGN(X-D) Linear-Linear 
33 Y=A+BX+CX^2+(X-D)SIGN(X-D)[C(X+D)+E] Linear-Quadratic  
34 Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] Quadratic-Linear 
35 Y=A+BX+CX^2+(X-D)SIGN(X-D)[E(X+D)+F] Quadratic-Quadratic 
36 Y=A+BX+C(X-D)SIGN(X-D)+E(X-F)SIGN(X-F) Linear-Linear-Linear  
37 Y=Exp((A/B)(1-Exp(BX))) Gompertz 2 
38 Y=AX^C/(B^C+X^C) Hill 

Custom Model 
This box is only used when the Preset Model option is set to ‘Custom Model’. When used, it 
contains the regression model written in standard mathematical notation.  

Use ‘X’ to represent the independent variable specified in the X Variable box, not its variable 
name. Hence, if your independent variable is HEAT, you would enter A+B*LN(X), not 
A+B*LN(HEAT).  

Use the letters (case ignored) A,B,C,... (except X and Y) to represent the parameters to be 
estimated from the data. The letters used must be specified in one of the Parameter boxes listed 
under the Search tab. Note that you do not include a ‘Y=’ in the expression. That is, you would 
enter A+B*X, not Y=A+B*X. 

Expression Syntax 
Construct the expression using standard mathematical syntax. Possible symbols and functions are 

Symbols 
+ add 
-  subtract 
*  multiply 
/  divide 
^  exponent (X^2 = X*X) 
()  parentheses 
<  less than.  
>  greater than 
=  equals 
<= less than or equal 
>= greater than or equal 
<> not equal 
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Functions 
(a logic b) Indicator function. If true, result is 1; otherwise, result is 0. Logic 

values are <, >, =, <>, <=, and >=. The symbols a and b are replaced 
by numbers or letters. 

ABS(X) Absolute value of X. 
ARCOSH(X)   Arc cosh of X. 
ARSINH(X)   Arc sinh of X. 
ARTANH(X)   Arc tanh of X. 
ASN(X) Arc sine of X. 
ATN (X) Arc tangent of X. 
COS(X) Cosine of X. 
COSH(X)  Hyperbolic cosine of X. 
ERF(X)   The error function of X 
EXP(X) Exponential of X. 
INT(X) Integer part of X. 
LN(X) Log base e of X. 
LOG(X) Log base 10 of X. 
LOGGAMMA(X)   Log of the gamma function. 
NORMDENS(X)   Normal density. 
NORMPROB(X)   Normal CDF (probability). 
NORMVALUE(X)   Inverse normal CDF. 
SGN(X) Sign of X which is -1 if X<0, 0 if X=0, and 1 if X>0. 
SIN(X) Sine of X. 
SINH(X)   Hyperbolic sine of X. 
SQR(X) Square root of X. 
TAN(X) Tangent of X. 
TANH(X)   Hyperbolic tangent of X. 
TNH(X) Hyperbolic tangent of X. 
TRIGAMMA(X)   Trigamma function. 

Independent Variable 
Use ‘X’ in your expression to represent the independent variable you have specified. 

Parameters 
The letters of the alphabet (except X and Y) may be used to represent the parameters. Parameters 
can be only one character long and case is ignored. Each parameter must be defined in the 
Parameter fields below. 

Numbers 
You can enter numbers in standard format such as 23.456 and 254.43, or you can use scientific 
notation such as 1E-5 (which is 0.00001) and 1E5 (which is 100000). 

Examples 
Standard mathematical syntax is used. This is discussed in detail in the Transformation section. 
Examples of valid expressions are: 
A+B*X 

C+D*X+E*X*X or G+H*X+B*X^2 
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A*EXP(B*X) 

(X<=5)*A+(X>5)*B+C  

Bias Correction 
This option controls whether a bias-correction factor is applied when the dependent variable has 
been transformed. Check it to correct the predicted values for the transformation bias. Uncheck it 
to leave the predicted values unchanged. See the Introduction to Curve Fitting chapter for a 
discussion of the amount of bias that may occur and the bias correction procedures used. 

Model Parameters 
The following options control the nonlinear regression algorithm.  

Parameter 
Enter a letter (other than X and Y) used in the Model. Note that the case of the character is 
ignored. Each letter used in a Model (either Preset or Custom) must be defined in this section by 
entering its letter, bounds, and starting value.  

For example, suppose the model is A + B*X + C*X^2. The parameters in this expression are A, 
B, and C. Each must be defined here. 

Min Start Max 
Enter the minimum, starting value, and maximum of this parameter by entering three numbers 
separated by blanks or commas. You may enter ‘?’ as the starting value to instruct the program 
pick one for you (in which case a zero is often used). The program searches for the best value 
between the minimum and the maximum values, beginning with the starting value. 

Make sure that the starting values you supply are possible. For example, if the model includes the 
phrase 1/B, don’t start with B=0. Before taking a lot of time trying to find a starting value, make a 
few trial runs using starting values of 0.0, 0.1, and 1.0. Often, one of these values will work. 

Examples 
-1000 1 1000 which means starting value = 1, lower bound = -1000, and upper bound = 1000. 

-1 ? 1E9 which means starting value is unspecified, lower bound = -1, and upper bound = 
1000000000. 

• Minimum 
This is the smallest value that the parameter can take on. The algorithm searches for a value 
between this and the maximum. If you want to search in an unlimited range, enter a large 
negative number such as -1E9, which is -1000000000. 

Since this is a search algorithm, the narrower the range that you search in, the quicker it will 
converge. 

Care should be taken to specify minima and maxima that keep calculations in range. Suppose, 
for example, that your equation includes the expression LOG(B*X) and that values of X are 
positive. Since you cannot take the logarithm of zero or a negative number, you should set the 
minimum of B as a small positive number, insuring that the estimation procedure will not fail 
because of impossible calculations. 

• Starting Value 
Enter a starting value for this parameter or enter ‘?’ to have the system estimate a starting 
value for you. When using a custom model, a ‘?’ is replaced by zero. 
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• Maximum 
This is the largest value that the parameter can take on. The algorithm searches for a value 
between the minimum and this value, beginning at the Starting Value. If you want to search 
in an unlimited range, enter a large positive number such as 1E9, which is 1000000000.  

Since this is a search algorithm, the narrower the range that you search in, the quicker the 
process will converge. 

Resampling 

Bootstrap Confidence Intervals 
This option causes bootstrap confidence intervals and associated bootstrap reports and plots to be 
generated using resampling simulation as specified under the Resampling tab. 

Bootstrapping may be time consuming when the bootstrap sample size is large. A reasonable 
strategy is to keep this option unchecked until you have considered all other reports. Then run this 
option with a bootstrap size of 100 or 1000 to obtain an idea of the time needed to complete the 
simulation. 

Randomization Hypothesis Tests 
This option hypothesis tests and associated reports to be generated using Monte Carlo simulation 
as specified under the Resampling tab. 

Randomization tests may be time consuming when the Monte Carlo sample size is large. A 
reasonable strategy is to keep this option unchecked until you have run and considered all other 
reports. Then run this option with a Monte Carlo size of 100, then 1000, and then 10000 to obtain 
an idea of the time needed to complete the simulation. 

Options Tab 
The following options control the nonlinear regression algorithm.  

Options 

Lambda 
This is the starting value of the lambda parameter as defined in Marquardt’s procedure. We 
recommend that you do not change this value unless you are very familiar with both your model 
and the Marquardt nonlinear regression procedure. Changing this value will influence the speed at 
which the algorithm converges. 

Nash Phi 
Nash supplies a factor he calls phi for modifying lambda. When the residual sum of squares is 
large, increasing this value may speed convergence. 

Lambda Inc 
This is a factor used for increasing lambda when necessary. It influences the rate at which the 
algorithm converges. 

Lambda Dec 
This is a factor used for decreasing lambda when necessary. It also influences the rate at which 
the algorithm converges. 
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Max Iterations 
This sets the maximum number of iterations before the program aborts. If the starting values you 
have supplied are not appropriate or the model does not fit the data, the algorithm may diverge. 
Setting this value to an appropriate number (say 50) causes the algorithm to abort after this many 
iterations. 

Zero 
This is the value used as zero by the nonlinear algorithm. Because of rounding error, values lower 
than this value are reset to zero. If unexpected results are obtained, you might try using a smaller 
value, such as 1E-16. Note that 1E-5 is an abbreviation for the number 0.00001. 

Reports Tab 
This section controls which reports and plots are displayed. 

Select Reports 

Combined Summary Report ... Residual Report 
These options specify which reports are displayed. 

Select Plots 

Combined Function Plot: Y ... Probability Plot: Trans(Y) 
These options specify which plots are displayed. 

Predicted Values 

Predict Y at these X Values 
Enter an optional list of X values at which to report the predicted value of Y and corresponding 
confidence interval. You can enter a single number or a list of numbers. The list can be separated 
with commas or spaces. The list can also be of the form ‘XX:YY(ZZ)’ which means XX to YY 
by ZZ. 

Examples 
10 

10 20 30 40 50 

0:90(10) which means 0 10 20 30 40 50 60 70 80 90  

100:950(200) which means 100 300 500 700 900 

1000:5000(500) which means 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Legend 

Show Legend 
Specify whether to display the plot legend when a Group Variable is used. 

Legend Text 
Specify the legend title. Note that {G} is replaced by the Group Variable name. 
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Report Options 

Alpha Level 
Enter the value of alpha for the confidence limits. Usually, this number will range from 0.1 to 
0.001. A common choice for alpha is 0.05. You should determine a value appropriate for your 
needs. 

Precision 
Specify the precision of numbers in the report. Single precision will display seven-place 
accuracy, while the double precision will display thirteen-place accuracy. Note that all reports are 
formatted for single precision only. 

Variable Names 
Specify whether to use variable names or (the longer) variable labels in report headings. 

Value Labels 
Value Labels may be used with the Group Variable to make reports more legible by assigning 
meaningful labels to numbers and codes.  

• Data Values 
All data are displayed in their original format, regardless of whether a value label has been set 
or not.  

• Value Labels  
All values of variables that have a value label variable designated are converted to their 
corresponding value label when they are output. This does not modify their value during 
computation.  

• Both 
Both data value and value label are displayed. 

Example 
A variable named GENDER (used as a grouping variable) contains 1's and 2's. By specifying a 
value label for GENDER, the printout will display Male instead of 1 and Female instead of 2 on 
the reports. This option specifies whether (and how) to use the value labels. 

Reminder 
Value Labels are formed as two adjacent variables. The variable on the left contains the original 
values and the variable on the left contains the labels. A value label is assigned to a variable on 
the Variable Info sheet by designating the left variable of the pair as the Value Label variable. 

Skip Line After 
When writing a row of information to a report, some names and labels may be too long to fit in 
the space allocated. If the name (or label) contains more characters than this, the rest of the output 
for that line is moved down to the next line. Most reports are designed to hold a label of up to 
‘15’ characters. 

Enter ‘1’ when you always want each row’s output to by printed on two lines. Enter ‘100’ when 
you want each row printed on only one line. Note that this may cause some columns to be miss-
aligned. 
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Report Options – Decimal Places 

B ... SS & MS Decimals 
Specify the number of decimal places used when displaying this item. Use ‘General’ to display 
the entire number without special formatting using the number of digits specified in the Precision 
box. 

Function Plot and Residual Plot Tabs 
This section controls the plot(s) showing the data with the fitted function line overlain on top and 
the residual plots. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a scatter plot style file. This file sets all scatter plot options that are not set directly on 
this panel. Unless you choose otherwise, the default style file (Default) is used. These files are 
created in the Scatter Plot procedure. 

Display Prediction Limits (Function Plot) 
This option controls whether the prediction limits (confidence limits on the predicted values) are 
displayed.  

C.L. Line Width (Function Plot) 
Specify the width of the confidence limit lines. Note that the color of this line is the color of the 
corresponding symbol as defined under the Symbols tab. 

Function Line Width (Function Plot) 
Specify the width of the function lines. Note that the color of this line is the color of the 
corresponding symbol as defined under the Symbols tab. 
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Number of Points (Function Plot) 
Specify the number of points along the function at which it is evaluated for plotting. This affects 
the granularity of the line that represents the fitted function. Although valid values are from 20 to 
2000, we recommend 200. 

Symbol (Residual Plot) 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} and {X} are replaced by appropriate names. {M} is 
replaced by the model expression. Press the button on the right of the field to specify the font of 
the text. 

Probability Plot Tab 
The options on this panel control the appearance of the probability plot of the residuals. 

Vertical and Horizontal Axis 

Label 
This is the text of the axis labels. The characters {Y} and {X} are replaced by appropriate names. 
Press the button on the right of the field to specify the font of the text. 

Minimum and Maximum 
These options specify the minimum and maximum values to be displayed on the vertical (Y) and 
horizontal (X) axis. If left blank, these values are calculated from the data. 

Tick Label Settings... 
Pressing these buttons brings up a window that sets the font, rotation, and number of decimal 
places displayed in the reference numbers along the vertical and horizontal axes. 

Ticks: Major and Minor 
These options set the number of major and minor tickmarks displayed on each axis. 

Show Grid Lines 
These check boxes indicate whether the grid lines should be displayed. 

Plot Settings 

Plot Style File 
Designate a probability plot style file. This file sets all probability plot options that are not set 
directly on this panel. Unless you choose otherwise, the default style file (Default) is used. These 
files are created in the Probability Plot procedure. 
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Symbol 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color. 

Titles 

Plot Title 
This is the text of the title. The characters {Y} are replaced by the name of the variable. Press the 
button on the right of the field to specify the font of the text. 

Symbols Tab 
These options control the shape, color and size of the symbols plotted on the function plot. 

Plotting Symbols 

Group 1 - 15 
Click this box to bring up the symbol specification dialog box. This window will let you set the 
symbol type, size, and color of points plotted on the function plot. Note that the color you specify 
will be used for the function line and confidence limits. 

Resampling Tab 
The following options control the bootstrapping and randomization tests.  

Bootstrap Options – Sampling 

Samples (N) 
This is the number of bootstrap samples used. A general rule of thumb is that you use at least 100 
when standard errors are your focus or at least 1000 when confidence intervals are your focus. If 
computing time is available, it does not hurt to do 10000.  

We recommend setting this value to at least 3000. 

Retries 
If the results from a bootstrap sample cannot be calculated, the sample is discarded and a new 
sample is drawn in its place. This parameter is the number of times that a new sample is drawn 
before the algorithm is terminated. We recommend setting the parameter to at least 50. 

Bootstrap Options – Estimation 

Percentile Type 
The method used to create the percentiles when forming bootstrap confidence limits. You can 
read more about the various types of percentiles in the Descriptive Statistics chapter. We suggest 
you use the Ave X(p[n+1]) option.  



351-28  Curve Fitting – General  

C.I. Method 
This option specifies the method used to calculate the bootstrap confidence intervals. The 
reflection method is recommended. 

• Percentile 
The confidence limits are the corresponding percentiles of the bootstrap values.  

• Reflection 
The confidence limits are formed by reflecting the percentile limits. If X0 is the original value 
of the parameter estimate and XL and XU are the percentile confidence limits, the Reflection 
interval is (2 X0 - XU, 2 X0 - XL). 

Bootstrap Confidence Coefficients 
These are the confidence coefficients of the bootstrap confidence intervals. Since bootstrapping 
calculations may take several minutes, it may be useful to obtain confidence intervals using 
several different confidence coefficients. 

All values must be between 0.50 and 1.00. You may enter several values, separated by blanks or 
commas. A separate confidence interval is given for each value entered.  

Examples 
0.90 0.95 0.99 

0.90:0.99(0.01) 

0.90 

Bootstrap Options – Histograms 

Vertical and Horizontal Axis Labels 
These are the labels of the vertical and horizontal axes of the bootstrap histograms. 

Plot Style File 
This is the histogram style file. We have provided several different style files to choose from, or 
you can create your own in the Histogram procedure. 

Number of Bars 
The number of bars shown in a bootstrap histogram. We recommend setting this value to at least 
25 when the number of bootstrap samples is over 1000. 

Histogram Title 
This is the title used on the bootstrap histograms. 

Randomization Test Options 

Monte Carlo Samples 
Specify the number of Monte Carlo samples used when running randomization tests. Somewhere 
between 1000 and 100000 are usually necessary. Although we use 1000 as the default value, a 
better value for routine use is 10000.  

You also need to check the ‘Randomization Hypothesis Tests’ box on the Variables tab to run 
these tests. 
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Comparative Points 
Specify the number of X values at which the difference between group curves is computed. This 
is the value of K in the formula given earlier. The sum of the absolute values of these differences 
is use in the randomization test of whether the group curves coincide. 

Random Number Seed 

Random Number Seed 
This option specifies a random seed for the random number generator. Possible values are all 
integers between 1 and 32000. If you want to obtain the same results from one run to the next, use 
the same seed value. If you want to let the program select a random seed based on the time-of-
day, enter ‘RANDOM SEED’. 

Storage Tab 
The predicted values and residuals may be stored on the current database for further analysis. 
This group of options lets you designate which statistics (if any) should be stored and which 
variables should receive these statistics. The selected statistics are automatically stored to the 
current database while the program is executing. 

Note that existing data is replaced. Be careful that you do not specify variables that contain 
important data. 

Storage Variables 

Store Predicted Values, Residuals, Lower Prediction Limit, and Upper Prediction 
Limit 
The predicted (Yhat) values, residuals (Y-Yhat), lower 100(1-alpha) prediction limits, and upper 
100(1-alpha) prediction limits may be stored in the variables specified here.  

Template Tab 
The options on this panel allow various sets of options to be loaded (File menu: Load Template) 
or stored (File menu: Save Template). A template file contains all the settings for this procedure. 

Specify the Template File Name 

File Name 
Designate the name of the template file either to be loaded or stored. 

Select a Template to Load or Save 

Template Files 
A list of previously stored template files for this procedure. 

Template Id’s 
A list of the Template Id’s of the corresponding files. This id value is loaded in the box at the 
bottom of the panel. 
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Example 1 – Curve Fitting 
This section presents an example of how to fit and compare a Michaelis-Menten model (model 8) 
to two groups of data. This example will use the data in the FNREG5 database. In this example, 
the dependent variable is RESPONSE and the independent variable is TEMP. The groups are 
defined by the values of TYPE.  

You may follow along here by making the appropriate entries or load the completed template 
Example1 from the Template tab of the Curve Fitting – General window. 

1 Open the FNREG5 dataset. 
• From the File menu of the NCSS Data window, select Open. 
• Select the Data subdirectory of your NCSS directory. 
• Click on the file FNREG5.S0. 
• Click Open. 

2 Open the Curve Fitting – General window. 
• On the menus, select Analysis, then Curve Fitting, then One Independent Variable, 

then Curve Fitting – General. The Curve Fitting – General procedure will be displayed.  
• On the menus, select File, then New Template. This will fill the procedure with the 

default template.  

3 Specify the variables. 
• Select the Variables tab.  
• Set the Y Variable to RESPONSE.  
• Set the X Variable to TEMP. 
• Set the Group Variable to TYPE. 
• Set the Preset Model to 8 Y=AX/(B+X) Michaelis-Menten. 
• Check the Bootstrap Confidence Intervals box. 
• Check the Randomization Hypothesis Tests box. 

4 Specify the reports. 
• Select the Reports tab.  
• Check all reports and plots except the Iteration Detail Report. 
• Set the Predict Y at these X Values to 5 10 15 20. 

5 Specify the resampling. 
• Select the Resampling tab.  
• Set Samples (N) to 200. (We are using a small value for illustrative purposes. You 

should use at least 3000 when actually using the results.) 
• Set Monte Carlo Samples to 200. (We are using a small value for illustrative purposes. 

You should use at least 1000 when actually using the results.) 
• Set Random Number Seed to 17448. (Use this number so that our reports agree. Usually 

you would leave this set to ‘RANDOM START’.) 

6 Run the procedure. 
• From the Run menu, select Run Procedure. Alternatively, just click the Run button (the 

left-most button on the button bar at the top). 
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Parameter Estimates for All Groups 
 

Type Count Iter's R2 A B  
1 21 4 0.98356 10.72798 4.95941  
3 21 6 0.97645 10.31200 1.42325  
Combined 42 4 0.81153 10.20315 2.54358  

 

This report displays a summary of the results for each group and then for the case in which all 
groups are combined into one group. 

Group Name (Type) 
This column, headed by the name of the Group Variable, lists the group value that is displayed on 
this line. Note that the Value Labels option may be used to give more meaningful names to these 
values. 

Count 
This is the number of observations used by the nonlinear regression algorithm. 

Iter’s 
This is the number of iterations used by the nonlinear regression algorithm to find the estimates. 
You should note whether the maximum number of iterations has been reached (in which case the 
algorithm did not converge). 

R2 
This is the value of the pseudo R-squared value. A value near one indicates that the model fits the 
data well. A value near zero indicates that the model does not fit the data well. 

A B 
The final values of the estimated parameters are displayed so that you may compare them across 
groups. 

Analysis of Variance Across Groups 
   

   Model Error Sum Squares Mean Square 
Type Count Iter's R2 DF Error Error 
1 21 4 0.98356 19 1.73157 0.09114 
3 21 6 0.97645 19 2.16427 0.11391 
Combined 42 4 0.81153 40 43.74009 1.09350 
Ignored   0.98321 38 3.89585 0.10252 

 

This report displays goodness of fit results for each group and then for the case in which all 
groups are combined into one dataset. The final row of the report, labeled ‘Ignored’, gives the 
goodness of fit statistics for the model in which a separate curve is fit for each group. 

Group Name (Type) 
This column, headed by the name of the Group Variable, lists the group value that is displayed on 
this line.  

Count 
This is the number of observations used by the nonlinear regression algorithm. 
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Iter’s 
This is the number of iterations used by the nonlinear regression algorithm to find the estimates. 
You should note whether the maximum number of iterations has been reached (in which case the 
algorithm did not converge). 

R2 
This is the value of the pseudo R-squared value. A value near one indicates that the model fits the 
data well. A value near zero indicates that the model does not fit the data well. Note  

Error DF 
The degrees of freedom are the number of observations minus the number of parameters fit. 

Sum Squares Error 
This is the sum of the squared residuals for this group. 

Mean Square Error 
This is a rough estimate of the variance of the residuals for this group. 

Curve Inequality F-Test 
   

Curves    F-Test 
Tested DF Mean Square F Ratio Prob Level 
All 2 19.92212 194.3200 0.00000 
Error 38 0.10252  

 

This report displays an F-Test of whether all of the group curves are equal. This test compares the 
residual sum of squares obtained when the grouping is ignored with the total of the residual sum 
of squares obtained for each group. This test is routinely used in analysis linear models and its 
application to nonlinear models has occasionally been suggested. However, it is based on 
normality assumptions which seldom occur. When testing curve coincidence is important, we 
suggest you use a randomization test.  

Curves Tested 
This column indicates the term presented on this row.  

DF 
The degrees of freedom of this term.  

Mean Square 
The mean square associated with this term.  

F Ratio 
The F-ratio for testing the hypothesis that all curves coincide.  

F-Test Prob Level 
This is the probability level of the F-ratio. When this value is less than 0.05 (a common value for 
alpha), the test is ‘significant’ meaning that the hypothesis of equal curves is rejected. If this 
value is larger than the nominal level (0.05), the null hypothesis cannot be rejected. We do not 
have enough evidence to reject.  
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Curve Inequality Randomization Tests 
  
   Number of Points 
Curves Randomization Monte Carlo Compared 
Tested Prob Level Samples Along Curve 
1 vs. 3 0.00000 200 10 

 

This report displays the results of a randomization test whose null hypothesis is that the all the 
group curves coincide. When more than two groups are present, a separate test is provided for 
each pair of groups, plus a combined test of the equality of all groups. 

Curves Tested 
This column indicates the groups whose equality is being test on this row.  

Randomization Prob Level 
This is the two-sided probability level of the randomization test. When this value is less than 
0.05, the test is ‘significant’ meaning that the null hypothesis of equal curves is rejected. If this 
value is larger than the nominal level (0.05), there is not enough evidence in the data to reject the 
null hypothesis of equality.  

(Note: because this is a Monte Carlo test, your results may vary from those displayed here.) 

Monte Carlo Samples 
The number of Monte Carlo samples.  

Number of Points Compared Along the Curve 
The number of values along the X axis at which a comparison between curves is made. Of course, 
the more X values used, the more accurate (and time consuming) will be the test. 

Parameter Inequality Randomization Tests 
  
Curves Parameter Randomization Monte Carlo 
Compared Tested Prob Level Iterations 
1 vs. 3 A 0.74500 200 
1 vs. 3 B 0.03500 200 

 

This report displays the results of randomization tests about the equality of each parameter across 
groups. When more than two groups are present, a separate test is provided for each pair of 
groups, plus a combined test of parameter equality of all groups. 

Curves Compared 
This column indicates the groups being test on this row.  

Parameter Test 
This column indicates model parameter whose equality is being tested.  

Randomization Prob Level 
This is the two-sided probability level of the randomization test. When this value is less than 
0.05, the test is ‘significant’ meaning that the null hypothesis of equal parameter values across 
groups is rejected. If this value is larger than the nominal level (0.05), there is not enough 
evidence in the data to reject the null hypothesis of equality.  

(Note: because this is a Monte Carlo test, your results may vary from those displayed here.) 
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Monte Carlo Samples 
The number of Monte Carlo samples.  

Number of Points Compared Along the Curve 
The number of values along the X axis at which a comparison between curves is made. Of course, 
the more X values used, the more accurate (and time consuming) will be the test. 

Combined Plot Section 
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This plot displays all of the data and fitted curves, allowing you to quickly assess the quality of 
the results. 

Iteration Summary Section for Type=1 
  
Itn Residual 
No. Sum of Squares A B   
1 1.81547 10.51692 4.58046   
2 1.73188 10.71254 4.93394   
3 1.73157 10.72751 4.95871   
4 1.73157 10.72798 4.95941 
 

This report displays the progress of the search algorithm in its search for a solution. It allows you 
to assess whether the algorithm had indeed converged or whether the program should be re-run 
with the Maximum Iterations increased or the model changed. 
Note that if over ten iterations were needed, the program does not display every iteration. 
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Model Estimation Section for Type = 1 
 

Parameter Parameter Asymptotic Lower Upper 
Name Estimate Standard Error 95% C.L. 95% C.L. 
A 10.72798 0.30895 10.08135 11.37461 
B 4.95941 0.44270 4.03282 5.88599 
 
Iterations 4 Rows Read 21 
R-Squared 0.983564 Rows Used 21 
Random Seed 17448 Total Count 21 
 
Estimated Model 
(10.7279796048293)*(x)/((4.95940560335216)+(x)) 

   

This report displays the details of the estimation of the model parameters. 

Parameter Name 
The name of the parameter whose results are shown on this line. 

Parameter Estimate 
The estimated value of this parameter. 

Asymptotic Standard Error 
An estimate of the standard error of the parameter based on asymptotic (large sample) results. 

Lower 95% C.L. 
The lower value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. In most cases, the bootstrap confidence 
interval will be more accurate. 

Upper 95% C.L. 
The upper value of a 95% confidence limit for this parameter. This is a large sample (at least 25 
observations for each parameter) confidence limit. In most cases, the bootstrap confidence 
interval will be more accurate. 

Iterations 
The number of iterations that were completed before the nonlinear algorithm terminated. If the 
number of iterations is equal to the Maximum Iterations that you set, the algorithm did not 
converge, but was aborted. 

R-Squared 
There is no direct R-squared defined for nonlinear regression. This is a pseudo R-squared 
constructed to approximate the usual R-squared value used in multiple regression. We use the 
following generalization of the usual R-squared formula: 

R-Squared = (ModelSS - MeanSS)/(TotalSS-MeanSS) 

where MeanSS is the sum of squares due to the mean, ModelSS is the sum of squares due to the 
model, and TotalSS is the total (uncorrected) sum of squares of Y (the dependent variable). 

This version of R-squared tells you how well the model performs after removing the influence of 
the mean of Y. Since many nonlinear models do not explicitly include a parameter for the mean 
of Y, this R-squared may be negative (in which case we set it to zero) or difficult to interpret. 
However, if you think of it as a direct extension of the R-squared that you use in multiple 
regression, it will serve well for comparative purposes.  
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Random Seed 
This is the value of the random seed that was used when running the bootstrap confidence 
intervals and randomization tests. If you want to duplicate your results exactly, enter this random 
seed into the Random Seed box under the Simulation tab.  

Estimated Model 
This is the model that was estimated with the parameters replaced with their estimated values. 
This expression may be copied and pasted as a variable transformation in the spreadsheet. This 
will allow you to predict for additional values of X. Note that to insure accuracy, the parameter 
estimates are always given to double-precision accuracy. 

Analysis of Variance Table for Type = 1 
   

  Sum of Mean 
Source DF Squares Square 
Mean 1 847.88494 847.88494 
Model 2 951.50296 475.75148 
Model (Adjusted) 1 103.61802 103.61802 
Error 19 1.73157 0.09114 
Total (Adjusted) 20 105.34959  
Total 21 953.23453  

 

Source 
The labels of the various sources of variation. 

DF 
The degrees of freedom. 

Sum of Squares 
The sum of squares associated with this term. Note that these sums of squares are based on Y, the 
dependent variable. Individual terms are defined as follows: 

Mean The sum of squares associated with the mean of Y. This may or may not 
be a part of the model. It is presented since it is the amount used to adjust 
the other sums of squares. 

Model The sum of squares associated with the model. 

Model (Adjusted) The model sum of squares minus the mean sum of squares. 

Error The sum of the squared residuals. This is often called the sum of squares 
error or just “SSE.” 

Total The sum of the squared Y values. 

Total (Adjusted) The sum of the squared Y values minus the mean sum of squares. 

Mean Square  
The sum of squares divided by the degrees of freedom. The Mean Square for Error is an estimate 
of the underlying variation in the data. 
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Bootstrap Section 
 
---  Estimation Results ------ | --- Bootstrap Confidence Limits ---- 
Parameter Estimate | Conf. Level Lower Upper 
Intercept 
A 
Original Value 10.72798 | 0.90000 10.21652 11.26251 
Bootstrap Mean 10.73831 | 0.95000 10.11747 11.32328 
Bias (BM - OV) 0.01033 | 0.99000 9.81792 11.47991 
Bias Corrected 10.71765    
Standard Error 0.30969    
B 
Original Value 4.95941 | 0.90000 4.30466 5.70459 
Bootstrap Mean 4.97616 | 0.95000 4.07184 5.90947 
Bias (BM - OV) 0.01676 | 0.99000 3.87871 6.09763 
Bias Corrected 4.94265    
Standard Error 0.43834    
 
Predicted Mean and Confidence Limits of Response When Temp = 5.00000 
Original Value 5.38585 | 0.90000 5.21330 5.53273 
Bootstrap Mean 5.38588 | 0.95000 5.15965 5.54946 
Bias (BM - OV) 0.00003 | 0.99000 5.06827 5.58565 
Bias Corrected 5.38582    
Standard Error 0.09954  
Predicted Value and Confidence Limits of Response When Temp = 5.00000 
Original Value 5.38585 | 0.90000 4.76670 5.77922 
Bootstrap Mean 5.41128 | 0.95000 4.70845 5.83435 
Bias (BM - OV) 0.02542 | 0.99000 4.53484 5.89363 
Bias Corrected 5.36043    
Standard Error 0.30921  
  
(Report continues for the other values of Temp) 
 
Sampling Method = Observation, Confidence Limit Type = Reflection, Number of Samples = 3000. 
 

This report provides bootstrap estimates and confidence intervals for the parameters, predicted 
means, and predicted values. Note that bootstrap confidence intervals and prediction intervals are 
provided for each of the X (Temp) value requested. Details of the bootstrap method were 
presented earlier in this chapter. 

Original Value 
This is the parameter estimate obtained from the complete sample without bootstrapping. 

Bootstrap Mean 
This is the average of the parameter estimates of the bootstrap samples. 

Bias (BM - OV) 
This is an estimate of the bias in the original estimate. It is computed by subtracting the original 
value from the bootstrap mean. 

Bias Corrected 
This is an estimated of the parameter that has been corrected for its bias. The correction is made 
by subtracting the estimated bias from the original parameter estimate. 

Standard Error 
This is the bootstrap method’s estimate of the standard error of the parameter estimate. It is 
simply the standard deviation of the parameter estimate computed from the bootstrap estimates. 

Conf. Level 
This is the confidence coefficient of the bootstrap confidence interval given to the right. 
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Bootstrap Confidence Limits - Lower and Upper 
These are the limits of the bootstrap confidence interval with the confidence coefficient given to 
the left. These limits are computed using the confidence interval method (percentile or reflection) 
designated on the Bootstrap panel. 

Note that to be accurate, these intervals must be based on over a thousand bootstrap samples and 
the original sample must be representative of the population. 

Bootstrap Histograms Section 
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(Several more histograms are displayed.) 

  

Each histogram shows the distribution of the corresponding estimate.  
Note that the number of decimal places shown in the horizontal axis is controlled by which 
histogram style file is selected. In this example, we selected Bootstrap2 which was created to 
provide two decimal places. 
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Asymptotic Correlation Matrix of Parameters 
  

Asymptotic Correlation Matrix of Parameters for Type = 1 
 A B 
A 1.000000 0.940484 
B 0.940484 1.000000 
 

This report displays the asymptotic correlations of the parameter estimates. When these 
correlations are high (absolute value greater than 0.98), the precision of the parameter estimates is 
suspect. 

Predicted Values for Specified X Values for Type=1 
 

 Predicted Lower 95.0% Upper 95.0% 
 Value of Prediction Prediction 
Temp Response Limit Limit 
5.00000 5.38585 4.71548 6.05623 
10.00000 7.17139 6.52162 7.82116 
15.00000 8.06235 7.40400 8.72069 
20.00000 8.59634 7.91914 9.27355 

  

This section shows the predicted mean values and asymptotic (large sample) prediction intervals 
for the X values that were specified. Note that these are prediction limits for a new value, not 
confidence limits for the mean of the values. 

Predicted Values and Residuals Section 
 

    Lower 95.0% Upper 95.0% 
Row   Predicted Prediction Prediction 
No. Temp Response Value Limit Limit Residual 
1 0.00000 0.43846 0.00000 -0.63186 0.63186 0.43846 
2 1.00000 2.49732 1.80018 1.14295 2.45740 0.69714 
3 2.00000 2.93207 3.08302 2.40603 3.76000 -0.15094 
4 3.00000 3.76707 4.04351 3.36238 4.72464 -0.27644 
5 4.00000 4.79763 4.78959 4.11244 5.46675 0.00803 
6 5.00000 5.29474 5.38585 4.71548 6.05623 -0.09111 
. . . . . . . 
. . . . . . . 
. . . . . . . 
  

This section shows the values of the predicted values, prediction limits, and residuals. If you have 
observations in which the independent variable is given, but the dependent (Y) variable is blank, 
a predicted value and prediction limits will be generated and displayed in this report. 
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Plots 
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Normal Probability Plot 
If the residuals are normally distributed, the data points of the normal probability plot will fall 
along a straight line. Major deviations from this ideal picture reflect departures from normality. 
Stragglers at either end of the normal probability plot indicate outliers, curvature at both ends of 
the plot indicates long or short distributional tails, convex or concave curvature indicates a lack of 
symmetry, and gaps or plateaus or segmentation in the normal probability plot may require a 
closer examination of the data or model. We do not recommend that you use this diagnostic with 
small sample sizes. 

Residual versus X Plot 
This is a scatter plot of the residuals versus the independent variable, X. The preferred pattern is a 
rectangular shape or point cloud. Any nonrandom pattern may require a redefinition of the model. 

Function Plot 
This plot displays the data along with the estimated function. It is useful in deciding if the fit is 
adequate and the prediction limits are appropriate. 
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