Thank you for this: it did indeed work for the example you gave (including Jack's later correction).
However, when I ran this for my own (unbalanced) panel dataset (N=47, T-36, NT=823), -gretl- choked:
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
? logs lavggdp pop
Listing 67 variables:
0) const 1) country 2) year
3) score 4) max 5) adjscore
6) order 7) first 8) size
9) visits 10) language 11) host
12) border_countrie 13) links 14) eu
15) nato 16) icc 17) kyoto
18) fh_pr 19) fh_cl 20) fhscore
21) iraq1 22) iraq2 23) polindex
24) lagwbgdp 25) lagungdp 26) lavggdp
27) pop 28) l_lavggdp 29) l_pop
30) dt_1 31) dt_2 32) dt_3
33) dt_4 34) dt_5 35) dt_6
36) dt_7 37) dt_8 38) dt_9
39) dt_10 40) dt_11 41) dt_12
42) dt_13 43) dt_14 44) dt_15
45) dt_16 46) dt_17 47) dt_18
48) dt_19 49) dt_20 50) dt_21
51) dt_22 52) dt_23 53) dt_24
54) dt_25 55) dt_26 56) dt_27
57) dt_28 58) dt_29 59) dt_30
60) dt_31 61) dt_32 62) dt_33
63) dt_34 64) dt_35 65) dt_36
66) dt_37
Warning: generated missing values
? list X = order first visits language host links fhscore l_lavggdp l_pop dt_2-dt_36
Generated list X
? panel adjscore 0 X --robust
Model 4: Fixed-effects, using 823 observations
Included 47 cross-sectional units
Time-series length: minimum 1, maximum 37
Dependent variable: adjscore
Robust (HAC) standard errors
Omitted due to exact collinearity: dt_37
coefficient std. error t-ratio p-value
-----------------------------------------------------------
const −275.214 1101.01 −0.2500 0.8027
order 1.08344 0.259419 4.176 3.32e-05 ***
first 8.12990 14.4472 0.5627 0.5738
visits −4.30177 0.973728 −4.418 1.15e-05 ***
language −18.4580 6.61705 −2.789 0.0054 ***
host 15.3185 8.62230 1.777 0.0760 *
links 11.3360 2.38579 4.751 2.43e-06 ***
fhscore 4.84832 4.56374 1.062 0.2884
l_lavggdp −14.6571 10.3819 −1.412 0.1584
l_pop 5.48696 66.0810 0.08303 0.9338
dt_1 119.389 41.8247 2.855 0.0044 ***
dt_2 132.488 40.3803 3.281 0.0011 ***
dt_3 141.034 40.5656 3.477 0.0005 ***
dt_4 123.957 35.0240 3.539 0.0004 ***
dt_5 143.473 36.8987 3.888 0.0001 ***
dt_6 154.050 34.4538 4.471 9.01e-06 ***
dt_7 145.373 33.1778 4.382 1.35e-05 ***
dt_8 179.338 35.8883 4.997 7.29e-07 ***
dt_9 150.118 31.1913 4.813 1.81e-06 ***
dt_10 165.977 29.3945 5.647 2.34e-08 ***
dt_11 169.547 32.2387 5.259 1.90e-07 ***
dt_12 164.780 32.7179 5.036 5.98e-07 ***
dt_13 143.035 27.0339 5.291 1.61e-07 ***
dt_14 162.187 27.7669 5.841 7.81e-09 ***
dt_15 154.748 23.8133 6.498 1.50e-10 ***
dt_16 159.761 22.4501 7.116 2.65e-12 ***
dt_17 165.958 24.1232 6.880 1.29e-11 ***
dt_18 156.266 19.6676 7.945 7.33e-15 ***
dt_19 135.978 22.1994 6.125 1.48e-09 ***
dt_20 149.205 19.2219 7.762 2.82e-14 ***
dt_21 177.119 19.9124 8.895 4.54e-18 ***
dt_22 187.884 18.3915 10.22 5.42e-23 ***
dt_23 157.278 17.5641 8.955 2.79e-18 ***
dt_24 167.432 14.2153 11.78 1.92e-29 ***
dt_25 188.551 16.9743 11.11 1.34e-26 ***
dt_26 185.966 15.8267 11.75 2.54e-29 ***
dt_27 184.989 17.7171 10.44 6.97e-24 ***
dt_28 178.747 15.4103 11.60 1.13e-28 ***
dt_29 154.438 18.2544 8.460 1.45e-16 ***
dt_30 57.9160 19.2844 3.003 0.0028 ***
dt_31 25.7587 18.6302 1.383 0.1672
dt_32 45.6746 18.4930 2.470 0.0137 **
dt_33 3.04816 16.8308 0.1811 0.8563
dt_34 −5.74523 15.7867 −0.3639 0.7160
dt_35 13.7708 18.4558 0.7461 0.4558
dt_36 42.4965 14.1809 2.997 0.0028 ***
Mean dependent var −236.0365 S.D. dependent var 98.53478
Sum squared resid 1796860 S.E. of regression 49.57908
R-squared 0.774854 Adjusted R-squared 0.746827
F(91, 731) 27.64603 P-value(F) 2.3e-182
Log-likelihood −4331.643 Akaike criterion 8847.287
Schwarz criterion 9280.879 Hannan-Quinn 9013.630
rho −0.029294 Durbin-Watson 1.923296
Test for differing group intercepts -
Null hypothesis: The groups have a common intercept
Test statistic: F(46, 731) = 3.12977
with p-value = P(F(46, 731) > 3.12977) = 1.00693e-10
? series ai = $ahat
Generated series ai (ID 67)
? corr ai X
Correlation Coefficients, using the observations 1:01 - 47:37
(missing values were skipped)
ai order first visits language
1.0000 -0.1228 -0.2883 0.7048 0.3867 ai
1.0000 0.0955 -0.0049 -0.1280 order
1.0000 -0.2844 -0.0242 first
1.0000 0.0600 visits
1.0000 language
[...]
dt_36 dt_37
[...]
-0.0278 -0.0278 dt_33
-0.0278 -0.0278 dt_34
-0.0278 -0.0278 dt_35
1.0000 -0.0278 dt_36
1.0000 dt_37
? series Xb = lincomb(X, $coeff[2:])
Data error
? matrix b = $coeff[2:]
Generated matrix b
? series Xb = {X}*b
Matrices not conformable for operation
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
Sorry, but I don't see reference to a 'quasi-demeaning coeffiecent' anywhere in the results, and any reference to 'theta' in the manual is in the context of ARMA models, Kalman filters and matrices; I also looked at the command reference as well - also nothing.