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Abstract

Although it is commonly accepted that most macroeconomic variables are non-stationary, it is often

difficult to identify the source of the non-stationarity. In particular, integrated processes and short memory

models containing trending components share some statistical properties and this makes their identification

a hard task. The problem gets even harder in the presence of parameter instability. The goal of this paper

is to extend the classical testing framework of I(1) versus I(0)+trends and/or breaks by considering a more

general class of models under the null hypothesis: non-stationary fractionally integrated (FI) processes. The

proposed test is developed in the time domain and is very simple to compute. The asymptotic properties of

the new technique are derived and it is shown by simulation that it is very well-behaved in finite samples.

To illustrate the usefulness and the simplicity of the proposed technique, an application using inflation data

is also provided.
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1. Introduction

A standard practice in most macroeconomic applications is to test whether the trend component of a

variable is best represented as stochastic or deterministic. Typically, the former is captured by processes

containing a unit root while the latter is represented as the sum of a stochastic short-memory component

and some deterministic trends. Perron (1989) contributed to this literature by showing that standard

unit root tests could lead to erroneous conclusions if the true DGP was a short memory —I (0)— process

containing breaks in the deterministic components. This seminal contribution was the starting point of

a myriad of articles on the problem of distinguishing between I (1) vs. I (0) + breaks.

∗I would like to thank to Jushan Bai, Javier Hidalgo, Peter Robinson and other participants in seminars at LSE, CORE

and UB. I acknowledge financial support from the Spanish Ministry of Education through grants SEC2003-04429 and

SEC2003-04476 and also from the Barcelona Economics Program of CREA.
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Nevertheless, unit root processes are a very particular class within the group of integrated processes

that can be used to represent stochastic trends. Fractionally integrated (FI) processes contain the

former as a particular case but, by allowing for a fractional order of integration, are able to represent

a richer class of behaviors (see Baillie, (1996)). Furthermore, there is abundant evidence that supports

the empirical relevance of these class of models in macroeconomics and finance, justified from both a

theoretical and an applied perspective (cf. Henry and Zaffaroni (2002) for a list of references on this

subject).

Not surprisingly, it is well-known that it is also difficult to provide an unambiguous answer as to

whether a process is best represented as fractionally integrated or as short memory plus some determin-

istic components, possibly perturbed by sudden changes, since a similar identification problem as in the

I(1) case holds here. The issue of detecting patterns similar to those of a FI process when the DGP is

short memory containing deterministic terms and/or breaks has been widely analyzed (cf. Battacharya

et al. (1983), Künsch (1986), Teverovsky and Taqqu (1997), Giraitis et al. (2001), Diebold and Inoue

(2001), Perron and Qu (2004) and Davidson and Sibbertsen (2005), among others).1 It is generally

concluded that the use of standard techniques devised for FI processes could lead to the detection of

spurious persistence when applied on short memory processes containing trends and/or breaks. The

opposite effect is also well-documented, that is, conventional procedures for detecting and dating struc-

tural changes tend to find spurious breaks, usually in the middle of the sample, when in fact there is

only fractional integration in the data (see Nunes et al. (1995), Krämer and Sibbertsen (2002) and Hsu

(2001)).

There is an increasing interest on developing techniques that are able to distinguish between fractional

integration and I(0) models containing trends and/or breaks. Most of them consider the problem of

testing for (stationary) long memory versus a weakly dependent series with monotonic trended compo-

nents or breaks in the mean (see Künsch (1986), Heyde and Dai (1996), Sibbertsen and Venetis (2004)

and Berkes et al. (2005) , among others). Although this problem is of genuine interest, it is often

not useful in many macroeconomic applications where variables are markedly non-stationary. There

are fewer contributions that are able to deal with nonstationary values of d, Dolado et al. (2005) and

Shimotsu (2005) being notable exceptions.

The goal of this paper is to develop a simple testing device that is able to determine whether the non-

stationarity observed in the data is due to strong persistence of the shocks, modelled as a non-stationary

fractionally integrated process, or to the existence of deterministic trends, possibly containing breaks,

1The latter authors also point out that cross-sectional aggregation of a fairly general class of nonlinear processes produces

a model that not only has the same correlation patterns as FI processes but is also observationally equivalent to FI, in the

sense that the aggregated model is linear and converges to fBM.
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in an otherwise short memory process. The test is developed in the time domain and is very simple to

compute. Besides, it has a semiparametric character and then it is not needed to model the short-term

autocorrelation of the process. The asymptotic behavior of the test is provided and its finite sample

performance is analyzed via Monte Carlo simulations. Appropiate comparisons with other competing

techniques are also provided.

The structure of the paper is as follows. Section 2 presents the model and the hypotheses of interest.

Section 3 analyzes the problem of testing for FI vs. I(0)+ trended regressors. This framework is

extended in Section 4 by allowing for the presence of breaks (occurring at an unknown time) in the

deterministic components. The output of some Monte Carlo simulations that evaluate the performance

of the test in finite sample is reported in Section 5. To illustrate the simplicity and empirical usefulness

of this technique, an application using inflation data has been included. Section 7 draws some final

conclusions. All proofs are gathered in Appendix A while critical values for the proposed tests are

presented in Appendix B.

In the sequel, the definition of a FI (d) process that we will adopt is that of an (asymptotically)

stationary process, when d < 0.5 and that of a non-stationary (truncated) process, when d ≥ 0.5.

Those definitions are similar to those used in, e.g., Robinson (1994) or Tanaka (1999) (see, Appendix A

in Dolado, Gonzalo and Mayoral (2002) for details). Moreover, the following conventional notation is

adopted throughout the paper: L is the lag operator, ∆ = (1− L) , Γ (.) denotes the gamma function,

{πi (d)} represents the sequence of coefficients associated to the expansion of ∆
d in powers of L and are

defined as

πi (d) =
Γ (i− d)

Γ (−d) Γ (i+ 1)
. (1)

All integrals are taken with respect to the Lebesgue measure; Bd (.) is standard fractional Brownian

motion (fBM) corresponding to the limit distribution of the standardized partial sums asymptotically

stationary (truncated) FI (d) processes;2 Finally,
w
→ and

p
→ denote weak convergence and convergence

in probability, respectively.

2. The model and the hypotheses

In the following it is assumed that the data y1, ...., yT is generated as,

yt = β
′Zt + δ

′Vt (ω) + xt, t = 1, 2, ..., (2)

where,

∆dxt = ut, t = 1, 2, ... (3)

xt = 0 for all t ≤ 0, (4)

2According to the notation introduced in Marinucci and Robinson (1999) Bd (.) is a type II Fractional Brownian motion
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and,

Vt (ω) =

{
Zt−TB t ≥ TB,

0 otherwise.

The process yt and the k× 1 vector Zt of non-stochastic variables are observable,3 β and δ are k× 1

vectors or parameters and {ut} is an unobserved zero-mean process whose spectral density is strictly

positive at zero frequency. Moreover, {ut} is assumed to have a Wold representation,

ut = Ψ(L) εt, (5)

where the coefficients ψj are such that
∑∞
j=0 j

∣∣ψj
∣∣ < ∞ and {εt} is an unobserved i.i.d. zero mean

process with unknown variance equal to σ2 and µ4 = E |ε|
4 = ησ4 <∞. TB is the (unknown) parameter

describing the time when the break, if it exists, occurs and ω = TB/T determines the location of the

break point in the sample. It verifies that

ω ∈ Ω = [ωL, ωH ] ⊂ (0, 1).

Since the objective of this paper is to determine the source of the non-stationarity observed in the

data, more specifically, whether it comes from a high degree of inertia or the existence of (possibly

unstable) trended components in an otherwise short-memory process, the non-stationarity is modelled

in two different ways. Under the null hypothesis yt is considered to be a non-stationary FI (d) process

with no breaks so that δ is assumed to be equal to zero (no breaks). In this case, it will be assumed that

yt is FI (d) with d ∈ (1/2, 3/2).4 This assumption can be easily relaxed by using the results in Marinucci

and Robinson (1999) but we concentrate on this range since it is the most relevant in applications with

nonstationary series. In some economic problems, the value of d under the null hypothesis is known,

for instance, in the popular unit root case where d is set equal to 1. Nevertheless, in most relevant

situations it is unknown. Accordingly, the null hypothesis will be simple or composite, respectively,

that is,

H0 : d = d0, δ = 0 for some d0 > 1/2, (6)

or H
′

0 : d ∈ D0, δ = 0, D0 ⊂ (1/2, 3/2) (7)

corresponding to the cases where the order of integration under H0, d0, is known or unknown, respec-

tively. Under H1, yt is short memory and therefore d = 0 is imposed. The case where the alternative

hypothesis is a short memory process plus some trended components (without breaks) is analyzed in

3Zt will typically contain polynomials of t.
4The range of nonstationary values of d also includes the value d = 1/2. However, this value is excluded in the present

analysis since it constitutes a discontinuity point in the asymptotic theory.
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Section 3. Thus, in this section it is assumed that δ = 0 also under H1. Section 4, in turn, deals with

the case where δ is (partially or totally) unrestricted, allowing in this way for the possibility of breaks

occurring at an unknown time TB. More specifically the alternative hypothesis is formulated as,

H1 : d = 0, δ = 0, (8)

or H
′

1 : d = 0, δ unrestricted (totally or partially), (9)

that will be analyzed in Sections 3 and 4, respectively. In the latter case, attention is restricted, for

simplicity, to the case where there exists at most a single break. An extension to a multiple-change

environment can be entertained along the lines of Bai (1999) and Bai and Perron (1998).

It will not be needed to make additional parametric assumptions on the structure of ut but, if ut

admits an ARMA(p,q) representation, yt will be an ARFIMA (p, d, q) process under H0, (see Hosking,

(1981) and Granger and Joyeux, (1980)) or a trend-stationary ARMA(p,q) model under H1.

3. Testing for non-stationary fractional integration versus short memory and trends

The literature on testing whether a process posses a unit root or is best represented as weakly dependent

plus some deterministic trends is immense (see Xiao and Phillips, (1998) for a survey). There is also

an increasing interest on the problem of distinguishing between (stationary) long memory and I(0)

processes containing trended components (cf. Künsch (1986), Heyde and Dai (1996) , Sibbertsen and

Venetis (2004) and Berkes et al. (2005)). Nevertheless, the problem of testing for non-stationary

fractional integration versus short memory + trends has been largely overlooked in the literature. This

is very surprising given the enormous number of contributions devoted to the study of the I(1)-I(0) +

trends identification problem and that the I(1) model is only a very particular class within the group

of non-stationary, highly persistent processes. Section 5 includes some simulations that illustrate the

identification problem addressed in this section: standard methods for estimating FI processes find

values of d in the non-stationary interval when the true DGP is i.i.d + some trends.

In this section we deal with the problem of testing H0 and H ′
0 defined in (6) and (7) , against the

alternative hypothesis of short memory+trends, as described in (8) . Consider first the case where the

value of d under H0, d0, is known. This problem is quite simple since it just becomes a test of simple

hypotheses. Then, it is possible to derive the most powerful invariant test. Assuming gaussianity, minus

two times the log-likelihood function under H0 and H1 is given, respectively, by (except for an additive

constant),

L (d,Σ, β)|H0 =
(
∆d0y −∆d0Zβ0

)′
Σ−1

(
∆d0y −∆d0Zβ0

)
,

and

L (d,Σ, β)|H1 = (y − Zβ1)
′Σ−1 (y − Zβ1) ,
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respectively, where ∆d0y =
(
∆d0y2, ..., ∆

d0yT
)′
, y = (y2, ..., yT )

′ , Z = (Z′2, ..., Z
′
T )
′,

∆d0Z =
(
∆d0Z ′2, ..., ∆

d0Z ′T
)
and Σ is the non-singular variance-covariance matrix of (u2, ..., uT ) .

From the developments in Lehmann (1959), the most powerful invariant test of d = d0 vs. d = 0

rejects H0 for small values of

min
β
(y − Zβ)′Σ−1 (y − Zβ)−min

β

(
∆d0y −∆d0Zβ

)′
Σ−1

(
∆d0y −∆d0Zβ

)
. (10)

The test statistic is the difference in weighted sum of squared residuals from two constrained GLS

regressions, one imposing d = d0 and the other d = 0. This test is not feasible since Σ is in general

unknown. However, it is possible to obtain a feasible test with the same large sample properties. A

first approach would be to replace Σ by an appropriate estimate. But to do so it would be necessary to

impose some parametric restrictions on the correlation structure of ut. We advocate for a semiparametric

approach and leave the parametric structure of ut unspecified. If ut = εt is an i.i.d sequence, then

Σ = σ2IT−1, where IT−1 is the identity matrix of dimension (T − 1) . Substituting σ
2 by a consistent

estimate under H0 and rearranging terms, it follows that the test rejects H0 for small values of,
5

R (d0) =

(
y −Zβ̂1

)′ (
y − Zβ̂1

)

(
∆d0y −∆d0Zβ̂0

)′ (
∆d0y −∆d0Zβ̂0

) . (11)

where β̂0 and β̂1 are the OLS estimators under H0 and H1, respectively. The statistic in (11) can

also be used even if ut displays autocorrelation and the same distribution as in the uncorrelated case

can be obtained as long as a non-parametric correction that accounts for the autocorrelation in ut is

introduced. Theorem 1 below describes the asymptotic distribution of the test statistic when ut is a

general linear weakly dependent process and Z is a polynomial function of t. The asymptotic behavior

depends on the components included in the matrix Z. Explicit formulas for the popular case where Z

contains a constant or a constant a linear time trend are provided (see Appendix A) but it can be easily

generalized to higher order polynomials and other exponential functions of t. It turns out that, if an

appropiate correction that accounts for the correlation in ut is introduced, the test is asymptotically

equivalent to the most powerful invariant test described in (10) .

Theorem 1 Let yt be a FI (d0) process as defined in (2) for some d0 ∈ (1/2, 3/2) with Zt=(1) or

5The statistic in (11) is similar to the Von-Neumann ratio proposed in the framework of efficient unit root tests (see

Sargan and Bhargava (1983) and Bhargava (1986)). These authours showed that the statistic was locally most powerful for

testing the hypotheses of a random walk versus an AR(1) process. Schmidt and Phillips (1992) showed that the Lagrange

multiplier principle also leads to a similar expression for a Gaussian likelihood.
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Zt=
(
1 t

)
and δ = 0. Then,

T 1−2d0

(
y − Zβ̂1

)′ (
y − Zβ̂1

)

(
∆d0y −∆d0Zβ̂0

)′ (
∆d0y −∆d0Zβ̂0

) w
→

(
λ2

γ0

)∫ 1

0

(
BZd0 (r)

)2
dr.

where λ = σΨ(1), γ0 = σ
2
∑∞
i=0 ψ

2
j and BZd0 (r) is the L2 projection residual from the continuous time

regression,

Bd0 (r) = β̂
′
z (r) +Bzd0 (r, ω) ,

where z (r) = 1 or (1, r) according to whether Z contains a constant or a constant and a linear trend.

(See Appendix A for details).

In applications, one should first compute the statistics Rµ (d0) or R
τ (d0), according to whether Z is

considered to contain a constant or a constant and a trend, defined as

Rµ (d0) = T
1−2d0

(
λ̂
2

γ̂0

)−1 ∑T
t=1(yt − α̂1)

2

∑T
t=2(∆

d0(yt − α̂0))2
, (12)

and

Rτ (d0) = T
1−2d0

(
λ̂
2

γ̂0

)−1 ∑T
t=1

(
yt − α̂1 − β̂1t

)2

∑T
t=2

(
∆d0(yt − α̂0 − β̂0t)

)2 (13)

where α̂i and β̂i, i = {0, 1} are the OLS estimators under the corresponding hypotheses. Notice that

under H0, the filter ∆
d01(t>0) should be applied prior to the estimation of α̂0 and β̂0. Then, these

parameters are computed as the OLS estimates in a regression of ∆d0yt on ∆
d01(t>0) and ∆

d0−11(t>0)

(or equivalently, ∆d0t), where ∆η1(t>0) =
∑t−1
i=0 πi (η) and the coefficients πi (.) are defined in (1) . Under

H1, in turn, α̂1 and β̂1 are the OLS estimates of yt on a constant or a constant and a trend for R
µ and

Rτ , respectively.

As a second step, if autocorrelation in ut is suspected, the term
(
λ̂
2
/γ̂0

)−1
should be computed. This

factor can be estimated by nonparametric kernel techniques, analogous to those used in the estimation

of the spectral density (see Andrews (1991)). More specifically the variance of ut, γ0, can be estimated

under H0 by
∑(

∆d0yt −∆
d0Zβ̂0

)2
/T whereas λ2 can be rewritten as:

λ2 = γ0 + 2
∞∑

i=1

γi = 2πsu (0) .
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Several estimators of this quantity have been proposed, see Andrews (1991) for an analysis and

comparison of the different techniques. One of the most popular is the Newey-West estimator:

λ̂
2
= γ̂0 + 2

q∑

i=1

(1− j/ (q + 1)) γ̂i

where γ̂i = T−1
∑T
t=j+1 utut−j . Andrews (1991) also provides a guideline for choosing the value of

the lag truncation, q.6 See also Cai and Shintani (2005) for further analysis on the estimation of this

quantity. As a final step, the null hypothesis will be rejected whenever the values of Rµ (d0) or R
τ (d0)

are smaller than the critical values reported in Tables B1 and B2, respectively.

In most applications the order of integration d0 is unknown and therefore the tests R
µ and Rτ are not

feasible. In these cases, attention will be focused on composite null hypothesis as H ′
0, that is, whether

the memory parameter d belongs to an specific set D0 = [d, d] ⊂ (0.5, 1.5) . Then, the above-described

test can be employed in this case by replacing the unknown value d0 in (12) or (13) by an estimate of

d under H ′
0. The statistics R

i
(
d̂
)
, i = {µ, τ}, will be computed as (12) or (13) but replacing d0 by d̂

and H ′
0 will be rejected for small values of R

i
(
d̂
)
. The following theorem states that the asymptotic

distribution of the resulting resulting test statistic is the same as that described in Theorem 1 as long

as d̂ is consistent under H ′
0.

Theorem 2 Let yt be a FI (d0) process as defined in (2) with δ = 0 and d0 ∈ D0 = [d, d] ⊂ (1/2, 3/2).

Let Ri
(
d̂
)
be the statistics defined in (12) or (13) for i = {µ, τ}, respectively, where d0 has been replaced

by d̂ ∈ D0, a consistent estimate of d0. Then,

Ri (d0)−R
i
(
d̂
)
= op (1) .

Many estimation methods of d suit well the framework considered in this paper. Since the process

is nonstationary under H ′
0, one can take first differences and then apply any standard parametric or

semiparametric method developed for stationary FI processes. Several techniques also allow for directly

estimating the series since they provide consistent estimates of d even when the process is nonstationary,

see Velasco (1999a, b), Shimotsu and Phillips, (2000) or Shimotsu (2006) , among others.

Finally, the following theorem states the consistency of the technique proposed in this section.

Theorem 3 Let yt be defined as in (2) , with d = δ = 0. Then, the test based on the statistics Ri (d0) ,

(Ri
(
d̂
)
), rejects the hypothesis of H0 (H ′

0) with probability approaching 1.

6As Andrews points out, a correct choice of q is very important since the perfomance of these estimators can greatly

depend on this choice.
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It is easy to check that the test is also consistent if the true process is FI (d∗) with d∗ < 0.5. In this

case both the numerator and the denominator of Rµ and Rτ are Op (T ) since they contain the sum of

squared residuals from two stationary processes. Then, the statistic is the product of T 1−2d0 , where d0

is the value of d used as null hypothesis, and a term that is Op (1) . It follows that the product tends to

zero at a rate T 1−2d0, implying that the probability of rejecting H0 tends to 1.

4. Testing Fractional Integration versus Structural Breaks

In this section the assumption of δ = 0 is relaxed so that breaks in the deterministic components may

occur under the alternative hypothesis.

As in Section 3, we consider first the problem of testing H0 versusH
′
1. Let yt be defined as in (2) where

d0 is known and δ is totally or partially unrestricted under H
′
1. If the time when the break takes place

was known, the vector Vt (ω) would be completely determined and then, the most powerful invariant

test would reject the null hypothesis of fractional integration for small values of infβ,δ L (d = 0,Σ, β, δ)−

infβ L (d = d0,Σ, β, δ = 0) . Under Gaussianity, the critical region of this test would be given by,

inf
β,δ
(y −Zβ − V δ)′Σ−1 (y − Zβ − V δ)− inf

β

(
∆d0y −∆d0Zβ

)′
Σ−1

(
∆d0y −∆d0Zβ

)
< kT , (14)

for some kT . Although this test is unfeasible for the reasons stated in Section 3, it would be possible to

devise a statistic with analogous large sample properties just by following the same lines as in Section

3. However, this is not the case if the date of the break TB is unknown because the parameter TB

is not identified under H0. The usual testing approach in this case amounts to first computing the

(feasible) test for a large number of different values of TB, and then computing a certain functional of

these pointwise statistics (see for instance Andrews and Ploberger, (1994)).

We follow here this approach by considering the infimum of a sequence of a statistics computed

for different values of TB/T = ω ∈ Ω ⊂ (0, 1). Two distinct situations can arise when defining the

subset Ω. The first is when the interest is centered on change points in a known restricted interval,

say Ω = [ωL, ωH ] for 0 < ωL < ωH < 1. This would be the case when one wants to test for changes

initiated by some institutional or political change that has occurred at a known period. The second is

the case where no information is available a priori and hence, all points in (0, 1) are of some interest.

This situation may arise when one wants to apply a test of structural break as a general diagnostic

test of model adequacy. Since considering the whole interval (0, 1) would result in tests with very low

power, optimization is carried out in ω ∈ Ω, where Ω = [ωL, ωH ] for some 0 < ωL < ωH < 1. More

specifically, when no information on the location of the break is available, we will use the restricted

interval Ω = [0.15,0.85], as suggested by Andrews (1993) . The test statistic now becomes,

Rb (d0) = T
1−2d0

infω∈Ω(
∑T
t=1(yt − β̂

′

1Zt − δ̂1 (ω)
′ Vt (ω))2)

∑T
t=2(∆

d0(yt − β̂
′

0Zt))
2

(15)
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where both δ (ω) and Vt (ω) depend explicitly on ω and β̂1, δ̂1 (ω) and β̂0 are the OLS estimates under

H1 and H0, respectively. The asymptotic distribution depends upon the regressors contained in Zt and

also on the parameters that are allowed to break. Theorem 4 describes the large sample properties of

the statistic in (15) . In particular, explicit formulas and critical values are provided for the four cases

considered by Perron (1989) and Zivot and Andrews (1992). In three of these models, Zt contains both

a constant and a linear trend but they differ on the parameters that are allowed to break: Model 1

allows for a break in the level of the series, Model 2 allows for a change in the rate of growth and

finally, Model 3 admits both changes. In addition, we also consider “Model 0”, where Zt only contains

a constant that is allowed to break once in the sample.7 More specifically,

Model 0 : R0b (d0) = T
1−2d0 infω∈Ω(

∑
(yt − α̂1 − δ̂1DCt)

2)
∑(

∆d0(yt − α̂0 − β̂0t)
)2 , (16)

Model 1: R1b (d0) = T
1−2d0

infω∈Ω(
∑
(yt − α̂1 − δ̂1DCt − β̂1t)

2)
∑(

∆d0(yt − α̂0 − β̂0t)
)2 , (17)

Model 2: R2b (d0) = T
1−2d0

infω∈Ω(
∑
(yt − α̂1 − β̂1t− δ̂1DTt)

2)
∑(

∆d0(yt − α̂0 − β̂0t)
)2 , (18)

and

Model 3 : R3b (d0) = T
1−2d0 infω∈Ω(

∑
(yt − α̂1 − δ̂1DCt − β̂1t− δ̂2DTt)

2)
∑(

∆d0(yt − α̂0 − β̂0t)
)2 , (19)

where DCt = 1, if t > TB and 0 otherwise and DTt = (t− TB) if t > TB and 0 otherwise.

Theorem 4 Let yt be a FI (d0) process as defined in (2) for some d0 ∈ (1/2, 3/2) where Z contains a

constant or a constant and a linear trend. The asymptotic distribution of Rib for i={0,1,2,3} is given

by,

Rib (d0)
w
→
λ2

γ0
inf
ω∈Ω

(

∫ 1

0
(Bid0 (r, ω))

2dr,

where Bid0 (r, ω) is the L2 projection residual from the continuous time regressions,

Model 0: Bd0 (r) = α̂1 + δ̂1dc (ω, r) +B
0
d0 (r, ω) ,

Model 1: Bd0 (r) = α̂1 + δ̂1dc (ω, r) + β1r +B
1
d0 (r, ω)

Model 2: Bd0 (r) = α̂1 + β̂1r + δ̂1dt (ω, r) +B
2
d0 (r, ω) ,

7This case may be of interest when modeling series who do not seem to display a trend, such as inflation or interest

rates.
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Model 3: Bd0 (r) = α̂1 + δ̂1dc (ω, r) + β̂1r + δ̂2dt (ω, r) +B
3
d0 (r, ω) ,

where dc (ω, r) = 1(r>ω) and dt (ω, r) = (r − ω) 1(r>ω).

Critical values of the distributions above have been obtained by Monte Carlo simulation for the

uncorrelated case (ut = εt) and are presented in Appendix B. If correlation of ut is suspected, the

nuisance parameters λ2 and γ0 can be estimated according to the techniques detailed in Section 3.

When composite hypotheses such as H ′
0 are considered, an estimate value of d under that hypothesis

is needed prior to carry out the tests. Then, the statistics Rib defined in (16) to (19) can still be employed

for testing H ′
0 by replacing d0 by d̂. Theorem 5 states that under H ′

0, if a consistent estimator of d0 is

used to construct Rib

(
d̂
)
, for i = {0, 1, 2, 3}, then the same asymptotic distributions as in Theorem 4

are obtained.

Theorem 5 Let yt be a FI (d0) process as defined in (2) and d0 ∈ D0 = [d, d] ⊂ (1/2, 3/2)) . Let

Rib

(
d̂
)

be the statistics defined in (16) to (19) where d0 has been replaced by a consistent estimate,

d̂ ∈ D0. Then, it holds that

Rib (d0)−R
i
b

(
d̂
)
= op (1) , for i = {0, 1, 2, 3}. (20)

It follows that H ′
0 will be rejected when the value of R

i
b

(
d̂
)
is smaller than the corresponding critical

value (provided in Appendix B, Tables B3-B6).

Finally, the following theorem states the consistency of the proposed test.

Theorem 6 Let yt be defined as in (2) with d = 0 and δ possibly different from zero. Then, the test

based on the statistics Rib (d0) , (R
i
b

(
d̂
)
), rejects the hypothesis of H0 (H ′

0) with probability approaching

1.

5. Finite sample results.

This section presents the results of some Monte Carlo experiments designed to explore the finite sample

performance of the test introduced in Section 4. Different DGP’s have been considered (that will be

detailed below) and, unless otherwise stated, innovations have been drawn from independent N (0, 1)

distributions. The number of replications was set equal to 5000 in all cases.

The first experiment was to test the FI(d) (simple) hypothesis for several values of d ∈ (0.5, 1.5),

when the true model was generated as the sum of i.i.d innovations plus a time trend (with coefficient

0.05) and some deterministic terms that contained breaks at different time points (ω = {0.20, 0.5, 0.80}),

according to Models 0 to 3. Different sizes of breaks were considered, both in the constant and in the

time trend. In particular, the size of the break in the constant was ξ1 ={0.01, 0.05, 0.1}, and in the time
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trend was ξ2 ={0.005, 0.01, 0.1}. No short-term semiparametric correction was introduced to compute

the statistics in this case. Very remarkably, the power was equal to 100% in all cases, even for moderate

sample sizes (T=100).

Next, the composite hypothesis H ′
0 : d ∈ D0 with D0 = [1/2 + ε, 3/2− ε] for a value of ε = 0.01, was

considered for the same DGP as the one described above. As a first step, estimates of d were computed

using the Feasible exact local Whittle estimator (FELW, henceforth) introduced by Shimotsu (2006)

and Shimotsu and Phillips (2005) . The following table reproduces the mean and the standard deviation

of the estimates of d when the true model is i.i.d+ trends and/or breaks.

[Table 5.1 about here]

This table illustrates the identification problem addressed in this paper: a short-memory sequence

(even if it is i.i.d, as in this case) that contains trends and/or breaks that are not explicitly accounted

for, tends to display positive estimated values of d.8 Table 5.1 shows that the estimated values of d are

far from the true value (d = 0) and are contained in the interval considered in this paper, (0.5-1.5).

Even in the case where no break is present, that is, ξ1 = ξ2 = 0 (so that yt = 0.05t+ εt), the mean and

standard deviations of d were 0.69 and 0.0353 for T = 100 and 0.743 and 0.027 for T = 400, respectively.

The second step is to compute the test with the values obtained in the previous estimation exercise.

In agreement with the first experiment, when the estimated values of d are used to run the tests (in the

case where no short-term autocorrelation) H ′
0 could always be rejected.

Next, short-term autocorrelation was introduced in the DGP. Tables 5.2. to 5.4 present the results of

using Models 1-3 to test (simple) hypotheses of interest when the true DGP was an AR(1) process (with

an autoregressive coefficient equal to 0.5), plus some breaks. Different locations of the break point were

also tried (ω = {0.20, 0.5, 0.80}) but, for the sake of brevity, only the figures corresponding to ω = 0.5

are reported since they were all very similar.

[Table 5.2 about here]

[Table 5.3 about here]

[Table 5.4 about here]

From Tables 5.2 to 5.4 it is seen that the size of the break has not a big impact on power when d is

chosen a priori. As expected, power improves when T and d0 increase, since the test is consistent and

the bigger d0, the more distant H0 and H1 are.

Nevertheless, when d is estimated, the size of the break does matter. This is because the larger the

break (or the coefficient in the trend component), the higher the estimated value of d. And, as Tables

8Similar results are obtained if other estimation methods are employed.

12



5.2 to 5.4 illustrate, the higher the value of d used to run the test, the higher the power obtained. The

estimated values of d associated to the case where an AR(1) component was introduced are very similar

to those reported in Table 5.1, that is, estimated values are around 0.7-1. To have an accurate picture of

the power when an estimated d is used, one should compare the estimated values of d (Table 5.1) and the

rejection rates reported in Tables 5.2 to 5.4. For instance, for the case where ξ1 = 0 and ξ2 = 0.1, Table

5.1 reports mean estimated values of d̂ of 0.791 and 0.984 for T = {100, 400} respectively. The rejection

rates associated to these null hypothesis are approximately (see Table 5.3) 97.1% and 100%. This a very

good approximation to the true rejection rates computed for each estimated d which delivered values

of 96.9% and 100%, respectively.

Finally, we have compared the performance of the technique proposed here with other competing

methods. To the best of our knowledge, the closest reference is Dolado, Gonzalo and Mayoral (2005),

SB-FDF hereafter, who, by extending the popular Dickey-Fuller testing framework, are able to deal

with a very similar problem. This technique is similar in spirit to Zivot and Andrew’s (1992) but

fractional orders of integration are allowed for. The tests is based on the t-statistic associated to yt−1

in a regression of ∆dyt on yt−1, some deterministic components that are allowed to break and, possibly,

some lags of∆dyt to account for the serial correlation. When the date of the break is unknown, the test is

computed over a sequence of possible break dates and then, the minimum of the t-tests is chosen. Several

experiments have carried out to compare both techniques considering different scenarios: normal and

non-normal innovations that may or may not be autocorrelated. When no short-term autocorrelation is

included, both techniques deliver similar rejection rates, close to 100% for the relevant range of values of

d > 0.5. These results are robust to the distribution of the innovations (normal, χ21 and t2). Nevertheless,

when autocorrelation structure is allowed for, the technique proposed in this article is, in general, more

powerful. Different DGP’s have been considered, containing either AR or MA innovations or both. To

facilitate the comparison, the following table reports the power of the SB-FDF test calculated with the

same DGP as that used to compute Tables 5.2. to 5.4 above. For the sake of brevity, only the rejection

frequencies computed with the values ξ1 = 0.05 and ξ2 = 0.01 are reported, since all were quite similar.

The number of lags to be included in the SB-FDF regression was chosen according to the AIC.

[Table 5.5 about here]

6. Empirical Illustration

To illustrate the empirical applicability and the simplicity of the proposed technique, we now apply it

to the study of inflation data. This variable occupies a privileged place in macro-econometrics since

it plays a central role in the design of the monetary policy and has important implications for the

behavior of private agents. Moreover, a new interest in the subject has arisen in the last few years that
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has motivated a large number of empirical and theoretical contributions. In spite of this great effort,

there is no consensus in the literature about the most appropriate way to model the inflation rate. On the

one hand, there is abundant empirical evidence that post-war inflation in industrial countries exhibits

high persistence, close to the unit root behavior. The papers of Pivetta and Reis (2004) for the USA

and O’Reilly and Whelan (2004) for the euro zone are some examples. On the other, some authors have

argued that the above-mentioned results are very sensitive to the employed statistical techniques and

that the observed persistence may be due to the existence of unaccounted breaks, probably stemming

from changes in the inflation targets of monetary authorities, different exchange rate regimes or shocks

in key prices. For instance, Levin and Piger (2003) have found evidence of a break in the intercept of the

inflation equation and, conditional on this break, they argue that inflation shows very low persistence.

Finally, Cogley and Sargent (2001, 2005) claim that non-stationary (integrated) representations of

inflation are implausible from an economic point of view, since they would imply an infinite asymptotic

variance, which could never be optimal if the Central Bank’s loss function includes the variance of

inflation. Then, they consider inflation as being a short memory (I (0)) process.

The aim of this section is to shed further light on this controversy by applying the techniques devel-

oped in this article. To facilitate the comparison with previous analysis, the same data set as in Pivetta

and Reis (2004) has been employed: The price level, Pt, is measured through the seasonally-adjusted

quarterly data on the GDP deflator from the first quarter of 1947 to the last quarter of 2003 (9 observa-

tions have been added with respect to their analysis). This data has been obtained from the Bureau of

Economic Analysis. Then, inflation is computed as πt = 400 ∗ log(Pt/Pt−1), that is, it is the quarterly

continuously compounded annualized rate of change of the price level. Figure 1 presents a plot of this

data.
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U.S Inflation 1947.1 - 2003.4 

Figure 1
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The contradicting results described above could be explained if the inflation rate was a FI process.

Unit root tests are known to have very low power against FI alternatives. This could account for the

non-rejection of the this hypothesis in some applications considering inflation. On the other hand, if

inflation is FI and standard techniques for detecting and dating breaks are employed, it is well-known

that spurious breaks are likely to be detected.

There is both economic and statistical support for the hypothesis of FI in inflation. Gadea and

Mayoral (2005) provide an economic justification for the existence of fractional integration in inflation

data. They consider a sticky price model as in Rotemberg (1987) and, by allowing for firms having

heterogeneous costs of adjusting their prices, show that inflation behaves as a FI process. From an

applied point of view, evidence in favor of FI behaviour in inflation has been reported in several papers

(see, among others, Backus and Zin, (1993) , Baillie, Chung and Tieslau (1996) , Doornik and Ooms

(2004), etc.). Nevertheless, the methods employed in those articles are not robust to the existence of

structural breaks. Therefore, it remains to be checked whether the evidence supporting FI can be due

to existence of structural breaks.

To begin the analysis, Table 6.1 presents the results of some standard tests for unit roots. The first

two columns contain the figures from the Augmented Dickey-Fuller (ADF) and the Phillips- Perron

(P-P) tests of I (1) vs. I (0) and the third one, those obtained by applying the KPPS test of I (0) vs.

I (1) . A constant was included as the only deterministic regressor to compute the tests.9 From the first

two columns it is seen that when the unit root model is tested against I (0) , the former is rejected. The

opposite result is obtained when the hypothesis are reversed (third column). In this case, also the I(0)

is rejected against the alternative of I(1).

[Table 6.1 about here]

The rejection of the I (1) and the I (0) hypotheses is compatible with the existence of both fractional

integration and also with some types of structural breaks. This is so because unit root tests are known

to have some power against the latter DGP’s (see Lee and Schmidt (1996) , Diebold and Rudebush

(1991) and Perron (1989)).

The next step is to test for the suitability of the FI specification. Table 6.2 presents the results of

estimating d using different techniques: the Feasible Exact local Whittle estimators (FELW) (cf. Shi-

motsu, (2006) , Exact Maximum likelihood (EML, Sowell (1992)) and Minimun Distance (MD, Mayoral

(2004)). In all cases, fractional values of d ’far’ from both the I(0) and the I (1) hypothesis are found.

[Table 6.2 about here]

9The number of lags for the ADF test was determined usin the AIC while the bandwidth for the P-P and KPSS test

was chosen according to the Andrew’s (1991) data dependent method.
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Tests of fractional versus integer integration (d = 0 or 1) based on the values above are not able to

reject the FI hypothesis at the 5% signification level, confirming previous findings about the existence

of FI in inflation data (see the papers cited above).

Finally, it is checked whether the evidence in favor of FI is due to the existence of breaks in the

intercept of the inflation equation as claimed by Levin and Piger, (2003). Since the true d0 is unknown,

we consider H ′
0 as null hypothesis, that is, the inflation rate is a non-stationary FI(d0) process. In

particular, H ′
0 : d0 ∈ D0 = [1/2 + ε, 3/2-ε], for ε as small as desired. Table 6.3 presents the values

of testing nonstationary FI against short-memory, allowing for a single break in the intercept. The

estimates of d reported in Table 6.3. are used to compute the statistics.10 The null hypothesis of

non-stationary FI cannot be rejected against the alternative of I (0)+ breaks in any of the cases.

[Table 6.3 about here]

7. Conclusions

This paper analyzes the long-standing issue of determining the source of the non-stationarity observed

in many economic variables: whether it is a result of a high degree of inertia (very persistent shocks)

or it appears as a consequence of the existence of trends and/or of rare and unexpected events that

are able to change the underlying structure of the series (breaks). We have extended the traditional

approach of testing I (1) versus I (0)+breaks by allowing for a richer class of persistent behaviors under

H0. In particular, the possibility of fractional integration has been explicitly taken into account. It has

also been shown that explicitly considering FI processes is very relevant since tests of I (1) vs. I(0)

+breaks tend to reject the former hypothesis when the true DGP is a FI process with an integration

order smaller than 1. The asymptotic properties of the tests statistics as well as their finite sample

behavior have been analyzed. Finally, an empirical application that analyzes US inflation has been

reported and evidence of FI behavior has been found in this data set. This finding helps to understand

previous controversies.

10The bandwith to compute the Newey-West correction was chosen according to Andrews (1991). Different values were

also tried and the results remain qualitatively identical.
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Appendix A

Proof of Theorem 1

1. Consider first the case where the DGP is given by yt = α+xt and ∆
d0xt = ut so that Z is a vector

of ones. Then, the numerator of Rµ in (11) is given,

T∑

t=1

(yt − α̂1)
2 =

T∑

t=1

(

α+ xt − T
−1

T∑

t=1

(α+ xt)

)

(21)

=
T∑

t=1

xt
2 − T−1

(
T∑

t=1

xt

)2
, (22)

where xt is defined in (3). By the functional central theorem (see Akonom and Gourieroux, 1987)

and the continuous mapping theorem, it follows that

T−2d0
T∑

t=1

(yt − α̂1)
2 = T−2d0

T∑

t=1

xt
2 −

(

T−1/2−d
T∑

t=1

xt

)2

w
→ λ2(

∫ 1

0
(Bµd0 (r))

2dr

where λ2 = σ2Ψ(1)2 is the long-run variance, Bµd0 (r) = Bd0 (r) dr −
(∫ 1
0 Bd0 (r)dr

)
and Bd0 is a

standard type II fractional Brownian motion (see Marinucci and Robinson, 1999).

For the case where Zt =
(
1 t

)
, it is known that (see Marmol and Velasco, 2002, pp. 38)

T−2d0
∑(

yt − α̂1 − β̂1t
)2 w
→ λ2(

∫ 1

0
(Bτd0 (r))

2dr

= λ2

(∫ 1

0
B2d0 (r)dr −

(∫ 1

0
Bd0 (r)dr

)2
− 12

(∫ 1

0
(r − 1/2)Bd0 (r) dr

)2)

. (23)

On the other hand, notice that under H0, the process ∆
d0yt is an I(0) process plus a trend and

therefore α̂0, β̂0 are consistent estimator of α and β. This implies that the denominator of (11) tends

in probability to the variance of ut, γ0. �

Proof of Theorem 2

Notice that the numerator of (11) can be written as,

T−2d̂

T−2d0
T−2d0

∑(
yt − β̂

′

1Zt
)2

(24)
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and since T−2d̂/T−2d0 → 1 for any consistent estimator d̂ of d0, it follows that limit of (24) is identical to

that of the numerator of (11) .With respect to the denominator, since d̂
p
→ d0, a sufficient condition that

guarantees that T−1
∑(

∆d̂yt − β̂
′

0∆
d̂Zt

)2 p
→ γ0 is uniform convergence of T−1

∑(
∆d̂yt − β̂

′

0∆
d̂Zt

)2
on

an open convex set B0 containing d0. This uniform convergence follows from the pointwise convergence

of T−1
∑(

∆d0yt − β̂
′

0∆
d0Zt

)2
to γ0 and an equicontinuity argument using the compactness of D0 and

the differentiability of
∑(

∆dyt − β̂
′

0∆
dZt
)2
with respect to d (cf. Davidson, 1994, p. 340, and Velasco

and Robinson, 2000).�

Proof of Theorem 3

Under H1, both the numerator and denominator represent the variances of (asymptotically) stationary

processes and therefore they converge at rate T. This implies that the statistic tends to zero a rate T 1−2d0

if d > 0.5 and therefore, the probability of rejecting H1 tends to 1 if T →∞.�

Proof of Theorem 4

The proof of this theorem is constructed along the lines of the proofs of Theorem 1 in Perron (1997)

(P. henceforth) and also Theorem 1 in Zivot and Andrews (1992) (Z&A hereafter). We consider first

the proof for the case where ut = εt is an i.i.d. sequence and then we will relax this assumption.

We adopt the same notation as in the above-mentioned papers. Let St =
∑t−1
j=0 πj (−d) εt−j, (S0 = 0) ,

and XT (r) be the partial sum process defined as,

XT (r) = T
1/2−d0σ−1S[Tr], (j − 1) /T < r < (j + 1)/T for j = 1, ..., T,

where σ2 = p limT→∞ T
−1
∑T
t=1 ε

2
t . Let us define z

i
tT (ω) for i = {0, 1, 2, 3} as the vector that contains the

deterministic components for model i under the alternative hypothesis. For instance, if i = 1, z1tT (ω)
′ =(

1 t DCt (ω)
)
. Also, ZiT (ω, r) represents a rescaled version of the deterministic regressors, i.e.,

ZiT (ω, r) = θiT z
i
[Tr]T (ω) , where θ

i
T is a diagonal matrix of weights.

11 Finally, we define the limiting

functions Z0 (ω, r) = (1, du (ω, r)) where du (ω, r) = 1(r>ω), Z
1 (ω, r) = (1, r, du (ω, r)) , Z2 (ω, r) =

(1, r, dt∗ (ω, r)) where dt∗ (ω, r) = (r − ω) 1(r>ω) and Z
3 (ω, r) = (1, r, du (ω, r) , dt∗ (ω, r)) . The test

statistics can be rewritten as:

inf
ω∈Ω

Rib (ω) = inf
ω∈Ω

∑T
j=1

(
yit (ω)

)2
∑T
j=2

(
∆d0yit

)2 , for i = {0, 1, 2, 3}, (25)

11For instance, in Model 1,

θ1T =





1 0 0

0 T 0

0 0 1




 .
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where yit = yt − z
i
tT (ω)

′
(∑T

s=1 z
i
sT (ω) z

i
sT (ω)

′
)−1∑T

s=1 z
i
sT (ω) ys for i = {0, 1, 2, 3}, ∆

d0y0t = ∆
d0yt −

α̂∆d0 and ∆d0yit = ∆
d0yt−α̂∆

d0− β̂∆d0−1 for i = {1, 2, 3}. Henceforth, only Model 1 will be considered.

Proofs for models {0,2,3} are analogous and therefore, are omitted. For simplicity, the superscript

denoting the model is dropped henceforth.

The proof will be completed in three steps that closely follow Perron’s and Z&A’s approach. In the

first one, it is shown that the numerator in (25) can be written as a functional g that is a composition

of functionals depending on XT (.) and ZT (., .). Next, some joint convergence results are needed and

finally, it is shown that g is a composition of continuous functionals and then is continuous. The proof

of the theorem is completed by applying the CMT.

First step. By expression (A.3) in Perron (1997) ,

T−2d0
T∑

j=1

(yt (ω))
2 = σ2

∫ 1

0
{XT (r)− PZt (ω)XT (r)}

2 dr + opω (1) (26)

= σ2H1 (XT , PZt (ω)XT (r)) + opω (1) , (27)

where opω (1) denotes a random variable that converges in probability to zero uniformly in ω, and

PZt (ω)XT (r) = ZT (ω, r)
′
[
ZT (ω, r)ZT (ω, r)

′
]−1

ZT (ω, r)

∫ 1

0
ZT (ω, s)XT (s) ds.

It follows that the numerator of (25) can be expressed as a functional g with arguments XT and

PZt (ω)XT (r), such that,

inf
ω∈Ω

T−2d0
T∑

j=1

(yt (ω))
2 = g(XT , Pzt (ω)XT (r)),

where,

g = h∗ [H1 (XT , Pzt (ω)XT (r))] ,

with h∗ (m) = infω∈Ωm (ω) for any real function m =m (.) on Ω and H1 is defined by (27) .

Second step. By Akonom and Gourieroux (1987) ,

XT (.)
w
→ Bd0 (.) (28)

and by a similar argument as that used in Lemmae A.2 and A.3 in Perron,

PZT (ω)XT (r)
w
→ PZ (ω)Bd0 (.) (29)

≡ Z (ω, r)′
[
Z (ω, r)ZT (ω, r)

′
]−1

Z (ω, r)

∫ 1

0
Z (ω, s)Bd0ds.
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Furthermore, (28) and (29) hold jointly (see Perron, Lemma A.1).

Third step. The final step is to show continuity of various functionals. Continuity of h∗ is shown in

Z&A (Lemma A.4) while continuity of H1 is shown in Perron (Lemma A.2, p. 383) . This implies that

g is also continuous. This result, combined with (28) and (29) and the CLT imply that the numerator

of (25) converges to infω∈Ω
(
σ2
∫ 1
0 {Bd0 (r)− PZ (ω)Bd0 (r)}

2 dr
)
. On the other hand, it is straight

forward to check that under H0 and ut = εt, then T
−1
∑T
j=2

(
∆d0yt

)2 p
→ σ2.

For the general case where ut is allowed to present autocorrelation, using stardard results it is possible

to obtain that the numerator of (25) tends to infω∈Ω
(
λ2
∫ 1
0 {Bd0 (r)− PZ (ω)Bd0 (r)}

2 dr
)
whereas the

denominator converges to γ0. �

Proof of Theorem 5

The numerator of Rb

(
d̂
)
can be written as,

(
T−2d̂

T−2d0

)

T−2d0 inf
ω∈Ω

(
T∑

t=1

(yt − β̂
′

1Zt − δ̂ (ω)
′ Vt (ω))

2)

where the first factor converges to 1 for any consistent estimator d̂ of d0 and the distribution of the

second term has been derived in Theorem 4. The denominator of Rb

(
d̂
)
is unchanged with respect to

(11) and therefore the steps described in Theorem 3 apply.�

Proof of Theorem 6

The proof of this theorem can be constructed along the same lines as that of Theorem 3 and therefore

is omitted.�
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Appendix B

The asymptotic distributions defined in the main text have been simulated for 50 values of d, from

d = 0.51 up to d = 1.49 with an increment of 0.02 between each consecutive values. The number of

replications was 10000 and the innovations were independent Gaussian series.

The results are summarized in Tables B1 to B6 by means of the coefficients of polynomial OLS

regressions of the 1%, 5%, and 10% sample quantiles of the corresponding statistic for each value of

d on a polynominal of d, namely,
(
1 d d2 d3 d4

)
. These tables can be used to obtain critical

values for any value of d ∈ (1/2, 3/2) with great precision by replacing d by d0 or d̂.

TABLE B1

Critical values Rµ test

Simplest case: H0 : ∆
d0(yt − α0) = εt; H1 : (yt − α1) = εt

T T = 100 T = 400

S.L.| regressors c d d2 d3 d4 c d d2 d3 d4

1% S.L 10.26 -36.99 49.84 -29.60 6.53 15.18 -56.18 77.25 -46.26 10.40

5% S.L. 11.07 -39.94 53.19 -31.51 6.93 16.02 -58.87 80.54 -48.43 10.78

10% S.L 11.37 -40.46 54.05 -31.91 7.00 16.53 -60.48 82.53 -49.54 11.01

TABLE B2

Critical values Rτ test

Trended case: H0 : ∆d0(yt − α0 − β0t) = εt; H1 : yt − α1 − β1t = εt

T T = 100 T = 400

S.L.| regressors c d d2 d3 d4 c d d2 d3 d4

1% S.L 9.71 -35.08 47.27 -28.05 6.17 14.72 -54.67 75.31 -45.49 10.16

5% S.L. 10.53 -37.90 50.94 -30.19 6.64 15.53 -57.35 78.67 -47.38 10.55

10% S.L 10.97 -39.36 52.81 -31.26 6.87 16.08 -59.23 81.12 -48.80 10.86

TABLE B3

Critical values R0b test

Model 0: H0 : ∆d0(yt − α0) = εt; H1 : yt − α1 − α2DCt (ω) = εt

T T = 100 T = 400

S.L.| regressors c d d2 d3 d4 c d d2 d3 d4

1% S.L 9.042 -32.829 44.420 -26.452 5.839 14.14 -52.73 72.86 -44.12 9.87

5% S.L. 9.610 -34.745 46.886 -27.870 6.144 14.98 -55.64 76.69 -46.35 10.35

10% S.L 9.949 -35.886 48.353 -28.713 6.325 15.38 -57.00 78.44 -47.37 10.57

25



TABLE B4

Critical values R1b test

Model 1: H0 : ∆
d0(yt − α0 − β0t) = εt; H1 : yt − α1 − α2DCt (ω)− β1t = εt

T T = 100 T = 400

S.L.| regressors c d d2 d3 d4 c d d2 d3 d4

1% S.L 8.667 -31.544 42.744 -25.478 5.628 13.91 -52.09 72.18 -43.80 9.81

5% S.L. 9.207 -33.390 45.137 -26.860 5.926 14.57 -54.30 75.00 -45.41 10.15

10% S.L 9.497 -34.366 46.390 -27.578 6.080 14.91 -55.43 76.41 -46.19 10.52

TABLE B5

Critical values R2b test

Model 2: H0 : ∆
d0(yt − α0 − β0t) = εt; H1 : yt − α1 − β1t− β2DTt = εt

T T = 100 T = 400

S.L.| regressors c d d2 d3 d4 c d d2 d3 d4

1% S.L 9.084 -33.098 44.882 -26.766 5.914 14.34 -53.67 74.35 -45.11 10.11

5% S.L. 9.671 -35.097 47.461 -28.248 6.232 14.86 -55.22 76.13 -46.00 10.27

10% S.L 10.005 -36.221 48.896 -29.066 6.4076 15.23 -56.50 77.76 -46.93 10.47

TABLE B6

Critical values R3b test

Model 3: H0 : ∆
d0(yt − α0 − β0t) = εt; H1 : yt − α1 − α2DCt (λ)− β1t− β2DTt = εt

T T = 100 T = 400

S.L.| regressors c d d2 d3 d4 c d d2 d3 d4

1% S.L 8.417 -30.743 41.771 -24.950 5.520 13.58 -50.92 70.64 -42.91 9.62

5% S.L. 8.887 -32.345 43.836 -26.135 5.774 14.21 -53.08 73.39 -44.46 9.95

10% S.L 9.135 -33.171 44.878 -26.722 5.898 14.50 -54.02 74.57 -45.11 10.08
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TABLE 5.1

M��� ��� STD 	
 d̂ (FELW)♠

True process (H1) : yt = ξ1DCt (ω) + ξ2DTt (ω) + 0.05t+ εt; εt ∼ i.i.d; ω = 0.5

Model 1 (ξ2 = 0) Model 2 (ξ1 = 0) Model 3

T |
ξ1 =

ξ2 =

0.01

0

0.05

0

0.1

0

0

0.005

0

0.01

0

0.1

0.01

0.005

0.05

0.01

0.1

0.1

T=100 0.690
(0.035)

0.691
(0.035)

0.700
(0.035)

0.690
(0.035)

0.696
(0.036)

0.791
(0.071)

0.690
(0.035)

0.700
(0.036)

0.801
(0.072)

T=400 0.743
(0.026)

0.743
(0.027)

0.746
(0.028)

0.750
(0.030)

0.762
(0.034)

0.984
(0.031)

0.751
(0.030)

0.764
(0.035)

0.985
(0.031)

(♠) Standard deviations in brackets.

TABLE 5.2

M	��� 1: P	��� R1b ����; S.L:5%.

True process (H1) : yt = ξ1DCt (ω) + 0.05t+ 0.5yt−1 + εt; ω = 0.5

T=100 T=400

ξ1/H0 : d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.0 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.0

0.01 65.3% 89.5% 98.1% 99.1% 100% 86.3% 93.2% 98.3% 99.2% 100%

0.05 66.9% 89.3% 99.2% 99.1% 100% 86.3% 93.2% 98.6% 100% 100%

0.1 66.6% 90.7% 98.1% 99.0% 100% 86.7% 93.2% 98.2% 100% 100%

TABLE 5.3

M	��� 2: P	��� R2b ����; S.L:5%.

True process (H1) : yt = ξ2DTt (ω) + 0.05t+ 0.5yt−1 + εt; ω = 0.5

T=100 T=400

ξ2/H0 : d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.0 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.0

0.005 61.3% 85.5% 98.1% 99.1% 100% 85.3% 92.7% 97.3% 99.5% 100%

0.01 61.9% 86.3% 99.2% 99.1% 100% 85.2% 92.8% 97.6% 99.3% 100%

0.1 56.6% 84.7% 97.1% 99.0% 100% 81.2% 92.1% 97.3% 99.6% 100%
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TABLE 5.4

M	��� 3: P	��� R3b ����; S.L:5%.

True process (H1) : yt = DCt (ω) + ξ2DTt (ω) + 0.05t+ 0.5yt−1 + εt; ω = 0.5

T=100 T=400

(ξ1, ξ2)|H0 : d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.0 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=1.0

(0.01,0.005) 63.3% 87.5% 97.1% 99.1% 100% 87.3% 92.5% 96.3% 99.6% 100%

(0.05,0.01) 63.9% 87.3% 97.2% 99.1% 100% 87.3% 92.5% 96.3% 99.8% 100%

(0.1,0.1) 56.6% 82.7% 97.1% 99.8% 100% 89.2% 93.0% 95.3% 99.7% 100%

TABLE 5.5

P	��� SB-FDF ���� R1b ����; S.L:5%.

True process (H1) : yt = ξ1DCt (ω) + 0.05t+ 0.5yt−1 + εt; ω = 0.5

T=100 T=400

ξ1/H0 d0=0.6 d0=0.7 d0=0.8 d0=0.9 d0=0.6 d0=0.7 d0=0.8 d0=0.9

Model 1 79.3% 81.5% 87.1% 92.4% 84.3% 90.2% 93.3% 95.2%

Model 2 54.3% 50.3% 54.2% 57.6% 86.3% 93.2% 98.6% 100%

Model 3 56.3% 57.1% 59.8% 63.3% 86.7% 93.2% 98.2% 100%

TABLE 6.1

U��� �		� T����

ADF P-P KPSS (I (0) vs. I (1))

Value of the test -3.49∗∗ -5.88∗∗ 0.67∗

Critical Values (5%) -2.87 0.463
∗,∗∗Rejection at the 5% and the 1% level, respectively.

TABLE 6.2

E���$���	� 	
 d

FELW EML MD

d̂ 0.56
(0.11)

0.61
(0.14)

0.58
(0.12)

(Standard errors in brackets)
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TABLE 6.3

LR ����� FI(d) &� I(0) ���' 	�� (���) �� �'� *	������.

d̂FELW = 0.56 d̂EML = 0.613 d̂MD = 0.58

LR test 1.592 0. 697 1.182

Crit. Values (S.L.:5%) 0.5671 0.3876 0.4889
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