The estimated equation isModel 1: OLS, using observations 1950-1957 (T = 8)Dependent variable: Stock
coefficient std. error t-ratio p-value--------------------------------------------------------const 225.000 6.21177 36.22 2.95e-08 ***Time -6.25000 0.976086 -6.403 0.0007 ***
Mean dependent var 190.6250 S.D. dependent var 22.90313Sum squared resid 468.7500 S.E. of regression 8.838835R-squared 0.872340 Adjusted R-squared 0.851064F(1, 6) 41.00000 P-value(F) 0.000684Log-likelihood -27.63402 Akaike criterion 59.26804Schwarz criterion 59.42692 Hannan-Quinn 58.19644rho -0.010000 Durbin-Watson 1.650000
Now substitute time values in the estimated equation
225- 6.25 XGive X values like 1 , 2 3 up to 10You will get predicted values like this ( by manual calculation)when X is 5 ( value for 1954 ) the estimated value is 193.75. When X is 6 ( value for 1955) the predicted value is 187.5. By OLS this is the answer.
On Sat, May 17, 2014 at 7:19 PM, Huffelpuff <huffelpuff420@gmail.com> wrote:
Hi,
I'm new to gretl, so forgive my ignorance. I'm aware that gretl provides
forecasting functionality, but I'm interested in using any of the
time-series models in gretl (AR, ARIMA, GARCH, etc) to interpolate a
section of unknown data. If I have something like this:
Year Stock value
1950 215
1951 220
1952 200
1953 195
Then it is easy in gretl to predict the following years (1954, 1955, and
so forth). But if I have something like this:
Year Stock value
1950 215
1951 220
1952 200
1953 195
1956 190
1957 185
1958 170
1959 150
I then want to "predict" (or technically interpolate) the values for the
years 1954 and 1955 (the stock value will probably be something between
195 and 190). Is this possible with gretl? If so, how?
Peter
_______________________________________________
Gretl-users mailing list
Gretl-users@lists.wfu.edu
http://lists.wfu.edu/mailman/listinfo/gretl-users
_______________________________________________ Gretl-users mailing list Gretl-users@lists.wfu.edu http://lists.wfu.edu/mailman/listinfo/gretl-users