Dear Jack,

I want first to thank you for detailed answer on the restriction of the GARCH parameters.
I will look to dig some more details out if I can.

In this post I'll be as detailed as I can be. In attachment you will find
time series used to reproduce numbers mentioned below. I'm wondering
why is there discrepancy in std errors between GIG on one side and Eviews
on the other. I.e. to be precise difference between Sandwich (default) and OPG or
Hessian as VCV method. As you will see I get similar results for Eviews and GIG
for all cases except for default Sandwich estimator.

I generated returns (differences of logarithms) from this series and the
compared what I got in Eviews to GIG with default VCV method. The point is
that std errors do compare in GIG with Hessian or OPG and Eviews (friend estimated this since
I do not have one. Eviews version is 7.1) but not with default. I'm citing Gretl as tool used to estimate
parameters in my paper and now I have problem that parameters that are significant
in with GIG (OPG) and Eviews are not so significant any more in GIG (Sandwich).
WIG is just one example.

Can you shed some light on that ?

I would expect that all three versions are comparable. So here are the numbers:

GIG, VCV method: Sandwich
-----------------------------------------------------------------------------------------------

Model: GJR(1,1) [Glosten et al.] (Normal)*
Dependent variable: rr1
Sample: 1999/01/01-2009/07/10 (T = 2746), VCV method: Robust

    Conditional variance equation

             coefficient   std. error      z      p-value
  --------------------------------------------------------
  omega      2.42038e-06   1.19365e-06    2.028   0.0426   **
  alpha      0.0557507     0.0114864      4.854   1.21e-06 ***
  gamma      0.126791      0.0564448      2.246   0.0247   **
  beta       0.931879      0.0164785     56.55    0.0000   ***

    Llik:   7972.13621     AIC: -15936.27243
    BIC:  -15912.60082     HQC: -15927.71942

   (alt. parametrization)

             coefficient   std. error      z      p-value
  --------------------------------------------------------
  delta      2.42038e-06   1.19365e-06    2.028   0.0426   **
  alpha      0.0425096     0.00967673     4.393   1.12e-05 ***
  gamma      0.0282747     0.0145806      1.939   0.0525   *
  beta       0.931879      0.0164785     56.55    0.0000   ***


GIG, VCV method: OPG
-----------------------------------------------------------------------------------------------

Model: GJR(1,1) [Glosten et al.] (Normal)*
Dependent variable: ld_WIG
Sample: 1999/01/01-2009/07/10 (T = 2746), VCV method: OPG

    Conditional variance equation

             coefficient   std. error       z       p-value
  ----------------------------------------------------------
  omega      2.42038e-06   4.31481e-07     5.609   2.03e-08  ***
  alpha      0.0557507     0.00529405     10.53    6.23e-026 ***
  gamma      0.126791      0.0361987       3.503   0.0005    ***
  beta       0.931879      0.00544076    171.3     0.0000    ***

    Llik:   7972.13621     AIC: -15936.27243
    BIC:  -15912.60082     HQC: -15927.71942

   (alt. parametrization)

             coefficient   std. error       z       p-value
  ----------------------------------------------------------
  delta      2.42038e-06   4.31481e-07     5.609   2.03e-08  ***
  alpha      0.0425096     0.00617599      6.883   5.86e-012 ***
  gamma      0.0282747     0.00761659      3.712   0.0002    ***
  beta       0.931879      0.00544076    171.3     0.0000    ***

EVIEWS (both parametrizations):
------------------------------------------------------------------------------------------------

Dependent Variable: DLOG(WIG)
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 07/19/11   Time: 21:25
Sample (adjusted): 1/01/1999 7/10/2009
Included observations: 2746 after adjustments
Convergence achieved after 18 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)*(ABS(RESID(-1)) - C(3)*RESID(-1)) + C(4)*GARCH(-1)

Variable    Coefficient    Std. Error    z-Statistic    Prob.

    Variance Equation

C(1)    2.76E-06    4.43E-07    6.236255    0.0000
C(2)    0.058316    0.005389    10.82082    0.0000
C(3)    0.123207    0.036352    3.389241    0.0007
C(4)    0.927083    0.005282    175.5047    0.0000

R-squared    -0.000320        Mean dependent var        0.000260
Adjusted R-squared    0.000044        S.D. dependent var        0.014545
S.E. of regression    0.014545        Akaike info criterion        -5.815934
Sum squared resid    0.580945        Schwarz criterion        -5.807314
Log likelihood    7989.278        Hannan-Quinn criter.        -5.812820
Durbin-Watson stat    1.897671


Dependent Variable: DLOG(WIG)
Method: ML - ARCH
Date: 07/19/11   Time: 21:23
Sample (adjusted): 1/01/1999 7/10/2009
Included observations: 2746 after adjustments
Convergence achieved after 13 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)*RESID(-1)2 + C(3)*RESID(-1)2*(RESID(-1)<0) + C(4)*GARCH(-1)

Variable    Coefficient    Std. Error    z-Statistic    Prob.

    Variance Equation

C    2.76E-06    4.43E-07    6.233082    0.0000
RESID(-1)2    0.044740    0.006424    6.964226    0.0000
RESID(-1)2*(RESID(-1)<0)    0.028845    0.007976    3.616396    0.0003
GARCH(-1)    0.927145    0.005282    175.5278    0.0000

R-squared    -0.000320        Mean dependent var        0.000260
Adjusted R-squared    0.000044        S.D. dependent var        0.014545
S.E. of regression    0.014545        Akaike info criterion        -5.815963
Sum squared resid    0.580945        Schwarz criterion        -5.807343
Log likelihood    7989.318        Hannan-Quinn criter.        -5.812849
Durbin-Watson stat    1.897671