Hi everyone:

 

I´d like to compare results of censored model (tobit) with OLS regression. For this, I´ve prepared the following hypothetical data, that I´ve copied below. The censoring point for y is 1000. I´d estimated the following models:

 

ols Y const X

ols YCENS const X

 

And I´d like to estimate intreg with upper limit of 1000 (equivalent to Stata´s command: tobit YCENS X, ul(1000)). But, I´ve problems to define the variables minvar and maxvar. The model do not converge with Y_cens_minvar and Ycens_maxvar and X as independent variable. Are they correct?  

 

Additional question: Is there any equivalent to Stata´s command: truncreg YTRUNC XTRUNC, ul(1000)?

 

Thanks in advance for any help.

Maria Dolores Montoya Diaz

 

The database is:

 

 

Y

X

YCENS

YTRUNC

XTRUNC

Ycens_minvar

Ycens_maxvar

1

150

2

150

150

2

150

2

150

4

150

150

4

150

3

160

4

160

160

4

160

4

192

4

192

192

4

192

5

230.4

4

230.4

230.4

4

230.4

6

276.48

3

276.48

276.48

3

276.48

7

331.776

3

331.776

331.776

3

331.776

8

398.131

4

398.131

398.1312

4

398.1312

9

477.757

4

477.757

477.7574

4

477.7574

10

573.309

4

573.309

573.3089

4

573.3089

11

687.971

6

687.971

687.9707

6

687.9707

12

825.565

6

825.565

825.5649

6

825.5649

13

990.678

6

990.678

990.6778

6

990.6778

14

1188.813

8

1000

1000

15

1426.576

8

1000

1000

16

1711.891

8

1000

1000

17

1700

8

1000

1000

18

1700

8

1000

1000

19

1500

7

1000

1000

20

1200

6

1000

1000

21

1440

7

1000

1000

22

1728

8

1000

1000

23

2073.6

8

1000

1000

24

2488.32

8

1000

1000

25

2985.984

8

1000

1000

26

3583.181

18

1000

1000

27

4299.817

18

1000

1000

28

210

4

210

210

4

210

29

210

4

210

210

4

210

30

224

4

224

224

4

224

31

268.8

4

268.8

268.8

4

268.8

32

322.56

4

322.56

322.56

4

322.56

33

387.072

6

387.072

387.072

6

387.072

34

464.486

7

464.486

464.4864

7

464.4864

35

557.384

8

557.384

557.3837

8

557.3837

36

668.86

9

668.86

668.8604

9

668.8604

37

802.632

11

802.632

802.6325

11

802.6325

38

963.159

11

963.159

963.159

11

963.159

39

1155.791

15

1000

1000

40

1386.949

15

1000

1000

41

1664.339

15

1000

1000

42

1997.207

15

1000

1000

43

2396.648

15

1000

1000

44

2380

15

1000

1000

45

2380

14

1000

1000

46

2100

15

1000

1000

47

1680

15

1000

1000

48

2016

15

1000

1000

49

2419.2

15

1000

1000

50

2903.04

16

1000

1000