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SUMMARY

The distribution of a functional of two correlated vector-Brownian motions is approximated by a Gamma
distribution. This functional represents the limiting distribution for cointegration tests with stationary
exogenous regressors, but also for cointegration tests based on a non-Gaussian likelihood. The approximation
is accurate, fast and easy to use in comparison with both tabulated critical values and simulated p-values.
The proposed procedure is applied to a UK model investigating purchasing power parity. Copyright © 2005
John Wiley & Sons, Ltd.

1. INTRODUCTION

Testing the rank of the cointegrating space is now a common starting point for applied multivariate
economic analyses. The likelihood ratio test for cointegrating rank, denoted Tz, has been derived
by Johansen (1988, 1995). As the sample size T — oo, its limiting distribution is characterized
by a functional of Brownian motions:
1
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0
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where B(u) is a standard vector-Brownian motion, and in the most simple case F(u) = B(u).
More generally, F' depends on the treatment of deterministic terms, see Section 2. No analytical
expression is known for (1), so tabulation based on Monte Carlo simulation for a range of values
of dimensions and specifications of F' has been used instead. See, for example, the accurate
tables of MacKinnon et al. (1999). A different approach was taken by Doornik (1998), who
approximates the distribution of T by a Gamma distribution with the same mean and variance as
T. This also provides an accurate approximation, with the benefit that p-values and quantiles are
readily available.

Recent extensions to the cointegration framework have given rise to a variant of (1), with the
need to allow for correlation between the Brownian motions. This adds another dimension to the
tables, making the search for an effective approximation all the more important. Providing that
approximation is the objective of the current paper.

The plan of the remainder is as follows. In the next section, we present the distribution that is
approximated, and briefly discuss the context in which it has arisen. In Section 3, we show that the
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798 H. P. BOSWIJK AND J. A. DOORNIK

mean and variance of this distribution can be expressed as a function of the mean and variance of
T, a covariance parameter, and the correlations (pi, ..., pp). It is then suggested to use a Gamma
distribution with the same mean and variance as an approximation to the true distribution. In
Section 4, this approximation is shown to be very accurate, especially for quantiles and p-values
where accuracy is required (in the right-hand tail of the distribution). Section 5 applies the result
to the purchasing power parity model of Johansen and Juselius (1992). Section 6 concludes.

2. COINTEGRATION TESTS WITH STATIONARY EXOGENOUS REGRESSORS

First consider the vector autoregression, written as a vector equilibrium correction model (VECM):

k—1
AX,=TUX;_ + Y T;AX,_j+ &g +e, t=1,....T )
j=1
where {X,} is an n-vector time series, the starting values (X|_g, ..., Xo) are fixed, {&} is i.i.d.

N(0, ©), all parameters vary freely, and X} , = (X|_,,d;)’, where d, and ¢, are deterministic

regressors. When rank IT* = r < n such that IT* = ¢’ with « and g of full column rank r, and
the characteristic equation of (2) has n — r roots equal to one and all other roots outside the unit
circle (such that explosive behaviour and I(2)-ness are ruled out, see Johansen, 1995, theorem 4.2
and corollary 4.3), then the model implies that X, is cointegrated. The hypothesis of interest is
H (r) : rank IT* < r, and the limiting null distribution of the LR statistic T7 is given in (1) above.
Now B(u) in (1) is a standard p-vector Brownian motion, p = n — r, and F depends on the choice
of d, and ¢,. The three deterministic specifications most commonly used' are, in the notation of
Doornik et al. (1998) (also see Johansen, 1995, section 5.7),

e H, : both d, and g, are void, no deterministics, F(u) = B(u);
e H.:d;, =1, g, is void, restricted constant, F(u) = {B(u), 1};
eH,:d, =1t,q, =1, restricted linear trend, F(u) = {[B(u) — fol Bdul’, [u— %]}/.

Seo (1998) considers an extension of (2), where a weakly exogenous stationary vector process
Z, is added to the regressors (together with some of its lags):

k—1 m
AX, =TI'X; |+ TjAX,j+®q+ > D;Z_j+e, t=1,....T 3)
j=1 j=0

In this case (when Z; is 1(0)), the limiting distribution of the LR statistic for H (r) is character-

ized by
1 1 1
Qr 2 Q:tr{/ AW F' (/ FF/du> / FdW/} @)
0 0 0

'In these cases the process X; and the cointegrating relations exhibit the same deterministic pattern. We do not consider
H . (unrestricted constant, F(u) = {Bi(u),...,Bp_1(u), u) corrected for a constant) nor H g1 (unrestricted trend and
constant, F(u) = {By(u), ..., Bp—1(u), u*) corrected for constant and trend). Rank determination is more complex in
these cases (see Doornik et al., 1998, for an example), and the covariance term in (9) is not a constant. Also see Nielsen
and Rahbek (2000).
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DISTRIBUTION APPROXIMATIONS 799

where F (1) is the same as before,” and W (1) is a standard p-vector Brownian motion (p = n — r),
with E[W (1)B(1)'] = P = diag(py, ..., p,). The nuisance parameters p; € [0, 1] are defined as the
long-run canonical correlation coefficients between | ¢, and o/, (8, + Z;'.’:O D;Z,_ j), where o |
is any n x p matrix of full column rank such that o, IT* = &', ¢’ = 0 (see also footnote 8). The
motivation for this extension is that taking the stationary regressors into account leads to increased
asymptotic efficiency. Seo (1998, pp. 342—-343) gives the assumptions under which the limiting
distribution (4) holds. In Section 5 we apply this procedure, and compare it with an alternative
proposed by Rahbek and Mosconi (1999), which avoids the nuisance parameters. Note that Q =T
when P =1,,.
When n =1 (and r = 0, P = p), the random variable Q in model H, is the square of

1 1
vz(/ Bzdu) /BdW
0 0

Its distribution was obtained by Kremers ef al. (1992) as the limiting distribution of a ¢-
statistic for cointegration with known cointegrating vector. Because we may decompose W as
pB + (1 — p*)!/2U, with U a standard Brownian motion, independent of B, it follows that

1 1
/ BdB / BdU
V=p 0 1/2 0

1 izt - 1 12
0 0

=pY +(1—pH'?Z ®)

—-1/2

where Y corresponds to the limiting distribution of the Dickey—Fuller z-statistic, and Z is a
standard normal random variable, independent of B and hence Y. Kremers et al. (1992) suggest
to use critical values from the standard normal distribution by a small-o (in this case small-p)
asymptotic argument.

The same distribution of V was also obtained by Hansen (1995), in the context of testing
for a unit root with stationary exogenous regressors. Hansen tabulated the distribution of V for
0> €{0.1,0.2, ..., 1}, and suggested to interpolate these critical values for other values of p?. This
approach was extended by Seo (1998) to the multivariate case, leading to Q. With p > 1, however,
one has to construct tables for different values of (pi, ..., p,), which is rather impractical. Seo
provides tables for p <5 and (po1,...,0p) € PX--- x P, where P =1{0,0.2,0.4,0.6,0.8, 1},
which already is 20 pages of tables. Requiring from practitioners to obtain appropriate critical
values by interpolation in several dimensions may be prohibitively inconvenient, and definitely
does not add to the ease-of-use of the proposed test. Therefore, we suggest in the next section
an alternative approach to obtaining critical values or (preferably) p-values, based on Doornik’s
(1998) approach to approximate the distribution of T by a Gamma distribution with the same mean
and variance as T; also see Johansen (1988) and Nielsen (1997). This is closely related to Abadir
and Lucas’ (2000) approximation of the distribution of V by a normal distribution with non-zero
mean and non-unit variance.

2Seo (1998) tabulates H_, but not H. or H;. Instead he considers ‘No trend in DGP’ (restricted constant in DGP, but
unrestricted in model; F(u) = B(u) corrected for a constant) and ‘Trend in DGP’ (restricted trend/unrestricted constant in
DGP, unrestricted trend and constant in model; F(u#) = B(u) corrected for constant and trend).

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 797-810 (2005)



800 H. P. BOSWIJK AND J. A. DOORNIK

The distribution of V and Q also arises when H () is tested in model (2) with non-Gaussian
{e;} and corresponding non-Gaussian likelihood function. See, e.g., Lucas (1997), who considers
cointegration testing based on a Student-7 likelihood function, and Boswijk and Lucas (2002),
who use a semi-non-parametric likelihood function. Furthermore, the distribution of V emerges
when {g,} is assumed to follow a GARCH process, and an LR test for a unit root is based on the
corresponding likelihood function, see Ling and Li (1998, 2003) and Seo (1999). In the univariate
case p now represents the correlation between the errors ¢, and the ‘scores’ —a¢,/de;, where ¢,
are the log-likelihood contributions. The definition of p; in the multivariate case is discussed in,
e.g., Boswijk and Lucas (2002).

3. APPROXIMATING THE DISTRIBUTION OF Q

The Gamma distribution function I'(x; b, a) is specified here as:

X b

T(x:b, a) = / L pleag x>0.b>0.a>0 6)
o T'(b)

with ['(b) = [, 1*~'e™" dt, the Gamma function. A random variable X with this distribution has

mean E(X) = b/a and variance var(X) = b/a’.

Doornik (1998) demonstrated by simulation that the Gamma distribution with b = E(T)?/
var(T) and a = E(T)/var(T) provides an accurate approximation of the distribution of T. The
mean and variance of T could in principle be tabulated for the three different deterministic models
and many values of p. However, Doornik estimates response surfaces for the Monte Carlo results,
which were found (by simulation) to be sufficiently accurate:?

2p* — p+0.07+0.07 - 1 ()= for H,
EM ~ < 2p?+2.01p+0.06- 1(=1) +0.05 - 1{,—0) for H, (7
2p2+405p+05 —0.23. 1{p:1} —0.07 - 1{p:2} for H,
3p* —0.33p —0.55 for H,
var(T) ~ ¢ 3p? +3.60p +0.75 — 0.40 - 1;,—1 — 0.30 - 1{—p) for H, ®)

3p? 4+5.70p 4 3.20 — 1.30 - 1{p—1; — 0.50 - 1, for H,

1 1 1
TiZ/ dBiF/ (/ FF’du> / FdBl
0 0 0

Doornik also analyses

—1

where B; is the ith component of B, so that T = ,-p: 1 Ti. Since T; and T; have the same distribution,
we have E(T;) = E(T)/ p. Furthermore, he finds (by simulation) that for i # j,
—1.270 for H,
cov(T;, T;) ~ { —1.066 for H, 9
—1.35 for H,

This can be used to evaluate var(T;) = var(T)/p — (p — D)cov(T;, T).

3 The variance entries in table VII of Doornik (1998) should be labelled n — p, 1, n —p=1,n— p =2.

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 797-810 (2005)
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Here we adopt a similar approach for Q. Theorem 1 provides an expression for the mean and
variance of Q in terms of E(T), var(T;), cov(T;, T;) and (pi, ..., pp). Subsequent substitution of
the approximations (7)—(9) provides approximations to the first two moments of Q. This, in turn,
may be used to obtain an approximating Gamma distribution.

Theorem 1 Let g denote* the dimension of the vector F. Then

ETM) & 1 <&
E(Q>=Q2p?+ (1——Zp;“> Pq (10)
P = P
and
p i—1
Var(Q)—Var(T)Zp, +2cov (T, T; )ZZpl 0;
i=1 i=2 j=I
4E(T) & £
DS 21— gy +24 > —p) (11

i=1 i=1

Proof Decompose W as PB + RU, where R = diag{(1 — p{)'/?, ..., (1 — p})!/?} = (I — P})'/?,
and where U is a standard p-vector Brownian motion, independent of B. This implies that

| —12
Z= (/ FF/du)
0

independently of B. Defining
1 =172 .1
Y=</ FF’du) / FdB’
0 0

it follows that (remembering that both P and R are diagonal)
Q = tr([YP + ZR]'[YP + ZR])
= tr(PY'YP + PY'ZR + RZYP + RZ'ZR)
= tr(PY'YP) + 2 tr(PY'ZR) + tr(RZ'ZR)

1
/ FdU' ~ N(0, I,x,)
0

p
- Z pITi + 2 (PY'ZR) + > (1 — p))E; (12)
i=1

where & = Zq_l Z2 are independent x?(g) random variables. Because Z is independent of Y,
EQ2 tr[PY’ZR]) = 0 Thus we find

14 14
EQ) = Z PiE(T) + Z(l - 0)q

E(T)Z +<

4So0 g = p+ 1 for models H., H; and g = p for H.

) m
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802 H. P. BOSWIJK AND J. A. DOORNIK

To obtain the variance of Q, we first note that the first and third term in (12) are independent,
and hence uncorrelated. Furthermore, the second term is uncorrelated with the first term, because
it has mean zero conditionally on Y. Next, the covariance between the second and third term in
(12) is zero (conditionally on Y), because elements of Z are uncorrelated with squared elements
of Z (the normal distribution has third moment equal to zero). Hence all covariances are zero, and
the variance of Q can be reduced to

p P
var(Q) = var <Z ,ofT,-) + 4 var(tr[PY'ZR]) + var (Z(l - p,?)g,) (13)
i=1 i=1
For the first term of (13) we find
p P p i—1
var (Z p%ﬂ) =D pivarM)+2) > pipreov(Ti, T))
i=1 i=1 i=2 j=1

To evaluate the second variance term, we use
tr(PY'ZR) = tr(Y'ZRP) = vec(P) (Y ® R)vec(Z')
Hence, because E(tr[PY'ZR]|Y) = 0, and because P and R commute, being diagonal matrices:
var(tr[PY'ZR]) = E{var[vec(P) (Y ® R)vec(Z)|Y]}
= E[vec(P) (Y'Y ® R*)vec(P)]
= E[tr(Y'YP?R?)]

P
) Yo =p)
=Y i1 = pHE(T,) = ‘:‘fm)
i=1

The final term in (13) follows immediately from the fact that & ~ i.i.d. x*(q):

4 4
var (Z(l - p%m) =2¢» (1—p})
i=1 i=1

This completes the proof. g

The approximation to the distribution of Q is I'(:;b, a), with b = E(Q)?>/var(Q) and a =
E(Q)/var(Q). The arguments are computed using Theorem 1 in combination with the response
surfaces (7)—(9) obtained from prior simulations.

When using the proposed approximation in practice, several errors will be made.

1. Approximation error: the Gamma distribution is used instead of the exact limiting distribution.

2. Estimation error: the correlation coefficients are not known, and replaced by estimates.

3. Small sample error: the exact small sample distribution is not known. The actual distribution is
not only different because the sample size is small, but also because there is only asymptotic

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 797-810 (2005)



DISTRIBUTION APPROXIMATIONS 803

similarity with respect to all the nuisance parameters (other than the deterministic terms and
correlations, which are already handled).

Only (1) is relevant for the approximation provided in this paper, because it concerns the limiting
distribution. In particular, if one wanted to avoid the first approximation error and simulate the
exact asymptotic distribution (or interpolate Seo’s (1998) tables), then errors (2) and (3) would
remain. Although we emphasize the importance of these other errors in practice, they do not affect
the main contribution of the present paper. Therefore, the next section studies the approximation
error (1), which will turn out to be small.

4. EVALUATION OF THE APPROXIMATION

Our proposal is to approximate the limiting distribution of Q7 by a Gamma distribution, with
arguments provided by Theorem 1 and response surfaces. The first source of approximation error
is that the actual distribution is not Gamma. A possible second source is that the arguments of the
approximating distribution are obtained from a response surface.

Evaluation of the approximation is hampered by the fact that the actual distribution is a functional
of Brownian motions. Such a distribution is usually simulated by a discretized representation.
However, using a fixed sample size introduces a distortion. MacKinnon et al. (1999) solve this
by capturing the curvature with respect to the discretization sample size of the quantiles, while
Doornik (1998) captures the curvature in the mean and variance of the statistic. Then, letting
T — oo gives the asymptotic quantities. This indicates that simulation is not trivial, providing an
additional argument for the use of our procedure.

To illustrate our approach to assess the accuracy, we first consider one particular model: H;(0),
the test for rank zero in the presence of an unrestricted constant and a restricted trend, with p = 3
and p = (0.8, 0.2, 0.0). Details of the simulation procedure are given below.> Write f‘M,T for the
Gamma distribution that is fitted by matching the mean and variance to that found in this particular
Monte Carlo experiment, and 'y, for the approximation proposed in this paper.

Figure la gives the simulated distribution for discretization sample size 7 = 1000 and M =
100 000 replications. On the horizontal axis are the probability levels, and on the vertical axis the
corresponding simulated critical values. Also shown are its approximate 95% confidence interval,
computed as [p(1 — p)/(f>M)]%3, where f is the density corresponding to I'y; 7, together with ',
and IA*M,T. These are all indistinguishable on the current scale. Figure 1b draws the corresponding
QQ plot, with the approximation as reference on the horizontal axis. Finally, Figure 1c draws
the ‘tilted” QQ plot, i.e. in deviation from the 45° line. Then the reference distribution becomes
a horizontal line at zero. The tilted QQ plot allows us to distinguish between the lines that are
drawn. It shows that Iy, 7 (the dashed line) is mostly inside the confidence band, except in the
left tail, while f‘oo (the line at zero) is mostly outside, except for the right tail of the distribution.
Note that the confidence bands of the simulated critical values can be made arbitrarily small as
M grows, putting I'w, outside. However, the true limiting distribution will then also be outside,
because it does not coincide with 7" = 1000.

To obtain a better representation of the limiting distribution, we simulate the critical values for
sample sizes T = 200, 400, . .., 1800, 2000. The asymptotic critical value is then the intercept in

5 All experiments are done using Ox 3, see Doornik (2001).

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 797-810 (2005)



804 H. P. BOSWIJK AND J. A. DOORNIK

QQ plot tilted QQ plot
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Figure 1. Simulated quantiles of H;(0), p =3, M = 105, T = 1000 and approximation |

a regression on 1, 1/T, and the estimated standard error is used for the confidence bands. Because
we need to compare many different distributions in the next stage, we change the graphical
representation from QQ plots to probability plots (called PP plots in the remainder). Instead of
transforming the horizontal axis of Figure 1a with the quantiles of the Gamma approximation, we
transform the vertical axis with the distribution of the Gamma approximation. Tilting of the plot
is again necessary to show sufficient detail. The outcome for the experiment considered before is
in Figure 2. It shows that the approximation I'o, works remarkably well: the distance between the
distributions never exceeds 0.0025.

To evaluate the approximation more generally, we consider dimensions up to five and a range
of correlations: p=1,...,5 and (p1,...,p,) € P X --- x P, where P = {0, 0.2,0.4,0.6,0.8, 1}
(the ordering of the correlations is irrelevant). The fully correlated case, which coincides with
the standard trace test, is omitted. This design consists of 456 specifications for each of the three
treatments of deterministic terms, so 1368 experiments in total. The test statistic® is simulated
at sample sizes 200 (200) 2000, and the asymptotic critical value is again the intercept of a

0.004 -_ simulated o R _____,““.._‘.“.““
R +2SE N e,
0.002 L approximation: I',, | ...
0000 f———— =L et e
-0.002 |-
_0'004_....|....|....|....|....|....|....|....|....|....
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2. Tilted PP plot of simulated asymptotic quantiles for H;(0), p = 3, M = 10°, with reference to Iy

6Following Doornik (1998, section 4), the distribution of Q is simulated from —7 ) log(l — A;). Here, A; are the
eigenvalues of T"W/TF r(FpF r)7IF 7Wr, which is the discrete approximation to the expression inside the trace of
(4). Let E7 be a T x p matrix of standard normal random numbers, standardized such that EEr = T1I,. By is the
cumulated sum of E7, lagged one period, and Fr is By for H, (Br, ) for H., and (Br, 7) in deviation from mean for
H ), where ¢ and 1 represent the constant and trend term, respectively. Finally, dW is approximated by Wy = E7P + DrR,
where D7 is an independent 7 x p matrix of standard normal random numbers. Using the eigenvalues instead of the trace
mimics the statistical procedure, and has been found to be a more accurate approximation for given 7.

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 797-810 (2005)
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regression on 1, 1/T. The number of replications is 103, except for dimensions four and five,
where 10* is used (10° replications would take about a month of computation on a 1.6 MHz
Pentium IV).

This experiment yields 1368 analogues to Figure 2, which are displayed in the second column
of Figure 3, separate for each dimension. The first figure in column two is for p = 1, which has
15 PP plots, the second for p = 2 has 60 PP plots, and the third has 165. Dimensions 4 and 5 are
similar, and combined; however, the 1128 PP plots form just a black cloud, and are not shown.

The first column of Figure 3 shows the (smoothed) envelope of the cloud of PP plots in the
dashed line. The reference approximation I'y, is again the line at zero. Next, the average of the
PP plots is drawn, together with the standard error.

These plots enable us to assess the accuracy of the approximation. On average, there is very little
systematic bias. There is some systematic error in the left tail at dimension 1, but this disappears
as the dimension grows. The envelope gives an indication of the maximum error that is made
when using the proposed distribution. Except for the left tail of p = 1, this is always smaller than
0.01. For dimension 3 and higher the maximum error is less than 0.005 (p = 4,5 uses a lower
number of replications, and we believe this would be more concentrated with M = 105). In the
right tail of the distribution, which is most relevant for testing, the maximum error is smaller
still: less than 0.002 for critical values with probabilities in excess of 0.9. So if, for example, the
Gamma approximation is used to attach a p-value of 0.05 to a test outcome, the true value will
be between 0.048 and 0.052 (and potentially even closer to 0.05).

Average PP plots Individual PP plots

0.01

0.00
001F

-0.02

0.01

0.00 &
-0.01
-0.02

0.01

0.00
-0.01
-0.02

0.01

0.00 =

simulatedA ,,,,,,,,,,
approx: I, ——— envelope

-0.01

—-0.02 . | . ] . 1 A 1 p=.4,5

Figure 3. Average and individual tilted PP plots, with reference to f‘oo
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5. APPLICATION

To illustrate the proposed procedure, we use a variant of the model estimated by Johansen and
Juselius (1992) to investigate purchasing power parity in the UK. They estimate a VAR(2) with
unrestricted constant (model H.) and seasonal dummies using the UK wholesale price index (py),
the trade-weighted foreign wholesale price index (p;), the UK effective exchange rate (e|;), the
three-month treasury bill rate in the UK (i;), and the three-month Eurodollar interest rate in the
UK (i»). In addition, the change in oil price (A po;) and its lag were used as conditioning variables.
Johansen and Juselius (1992) found two cointegrating vectors. Hansen and Juselius (1995) use a
transformed version in terms of p; — p», A p; to avoid I(2)-ness. Following Rahbek and Mosconi
(1999) we adopt model H; by allowing a trend to enter the cointegrating space. In terms of (3) our
specification is a VAR(2):

X: = (p1: — par, Apis, e, U, iZI)/, X;k = (X;7 t)/
qt = (19 Slt» S2t1 S3I),
Z: = Apoil,

with k — 1 =m = 1, and where S;, are seasonal dummy variables. The effective sample size,
after taking all lags into account, is 1972(4)—1987(2). This model falls in the class considered by
Seo (1998), which allows us to take the presence of A p.i, into account. The test statistic is the
standard cointegration trace test (noting that A p.j, and its lag are also partialled out from the
levels and differences), but the limiting distribution is different.

Table I lists the test values for each rank, together with p-values. The fourth column, labelled
1 — Pr(Ty), gives the asymptotic p-value under the assumption that the presence of Z, does not
affect the distribution. The second cointegrating vector is only present if we are willing to adopt
a 10% significance level. However, the sample is very small: 59 observations with 17 regressors
in each equation. There may be a tendency to over-reject the true rank in small samples: when
adopting the sample size-adjusted’ p-value for H;(1), we find that it changes from 7.7% to 14%.
Correcting for the stationary exogenous regressors shrinks the distribution towards zero, so that
the p-values will always decrease. Now rank 1 is firmly rejected with a p-value of 1.7%. If we use
the small sample mean and variance of T7 in the formulae for Q (which is somewhat ad hoc), the
p-values for ranks 0—2 change to 1%, 3%, 11%, respectively. The final column lists the estimated

Table 1. p-Values for the tests Tr and Qr

r p=n-—r Trace test 1 —Pr(Ty) 1 —Pr(Qr) Canonical correlations, p
0 5 95.3 0.014 0.002 1, 1, 1, 0.849, 0.385

1 4 61.4 0.077 0.017 1, 1, 0.893, 0.412

2 3 37.8 0.150 0.084 1, 0.932, 0.802

3 2 16.7 0.445 0.300 0.970, 0.818

4 1 5.27 0.567 0.516 0.960

7 Using the formulae in Doornik (1998). This is not the exact distribution, but the limiting distribution evaluated using a
discretization at the same sample size as the estimations.

Copyright © 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 797-810 (2005)
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canonical correlations, following the suggestion of Seo (1998, p. 348).% So, when ignoring the role
of the stationary regressor (i.e. using 1 — Pr(T7)), we find one cointegrating relation. However,
basing inference on Q7 results in two relations.

To illustrate the procedure to obtain the distribution, consider H;(r = 4), which has only one
canonical correlation. The following steps are involved:

eUsen —r =1 for pin (7) and (8) to compute E(T) and var(T). This yields 6.32 and 10.6. The
next step requires var(T;), which is also 10.6 in this case.

e To compute E(Q) and var(Q), again use n — r = 1 for p; g is one more, corresponding to the
trend that has been added to the cointegrating vector. With p = 0.96, the result is 5.98 and 10.85,
respectively.

e The approximating distribution is I'(-;5.98%/10.85 = 3.30, 5.98/10.85 = 0.55). Or roughly:
1.1 x 5.27 comes from a x>(6.6); this uses X ~ I'(-, b, a) then 2aX ~ x>(2b).

Rahbek and Mosconi (1999) suggest an alternative approach to handle the presence of the
stationary regressor, which avoids the nuisance parameters in the limiting distribution. Their
solution, when Z, denotes the stationary regressor (possibly present with additional lags), is to add
Ci_1 = Zf;} Z; to the cointegrating vectors (i.e. adding C, to X7). In that case, the analysis is
conditional on an I(1) variable, and the analysis of Harbo er al. (1998) pertains. This test statistic,
denoted Sy here, was also considered by Doornik (1998), and the p-values are listed in Table II.
As Rahbek and Mosconi (1999) note, these results barely support the hypothesis that the rank is 1.

This discrepancy merits further investigation, because both approaches address the same issue.
The small sample size is a possible limitation to the power of the tests, and therefore we shall
work with a model that is more parsimonious. However, we first note that, although A p.; was
added by Johansen and Juselius (1992) to avoid non-normality, there is still strong non-normality
in the i; equation, caused by a single outlier. Therefore we add a dummy variable for 1980(2).
With this adjustment, all the vector and univariate misspecification tests of PcFiml (Doornik and

8 Recall that @ is an n x p matrix orthogonal to &. Define ¢, = @, &, and i, = &, (Z;":O D iZi—j + E,). Then the kernel
method of Andrews (1991) is applied:

T
B (D A for j >0
S - = . =j+1
=Y k(j/SrT(j) where T(j)= s
J=—K T-! Z Vg0, for j <0
t=—j+I1
and v, = (€, u;) = (U1,4,...,02p,). K is chosen as min(T — 1, |_50§TJ ). We use the quadratic spectral kernel with
automatic bandwidth and an AR(1) for each component:
. ~. 2p ,\
25 [sin(6mu/5) < ~1/5 L4675
k(u) = —5— | ———~—= —cos(6mu/5)|, Sy =1.3321[7T1'/°, i
)= 5 | w5 (6mu/5) T (471 Z lﬂmx/z ¢’)4

where q), is the OLS estlmate from regressing v;; on v;,—1 (T — 1 observations) and o, O' the corresponding residual
variance. Partmonmg b according to e and u, the canonical correlations are found from the generalized eigenproblem
IIO Eee - Eeuzuu z:uel =0.

The results in Table I are not much changed when using F(O) instead of . The smallest roots are then for r = 0, ... , 4,

respectively: 0.528, 0.545, 0.871, 0.887, 0.958, with small impact on the p-values: 0.003, 0.021, 0.091, 0.331, 0. 513
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Table II. p-Values for the test conditional on the
I(1) variable pg;

r p=n-—r Trace test 1 —Pr(St)
0 5 99.1 0.059
1 4 65.2 0.179
2 3 41.5 0.246
3 2 18.8 0.570
4 1 6.10 0.682

Hendry, 1997) are passed. A joint test on the seasonals supports their deletion; the same holds
for the second lags, with the exception of i, ,_». The seasonals and second lags are deleted, but
Ai, 1 is entered unrestrictedly.

The new test results, using the same sample period, are in Table III. (Doornik et al., 1998,
noted that an impulse dummy, when entered unrestrictedly, does not affect the distribution.) The
outcomes are no longer contradictory: a rank of 2 or more (the original conclusion of Johansen
and Juselius) is clearly supported. There is some evidence of a third cointegrating vector, but
the small sample argument leads us to reject this. Accepting r = 2, we can test whether the oil
price can be deleted from the cointegrating vectors in the model corresponding to S7. The test
supports this: x?(2) = 0.92 (p-value: 0.63). A weak form of purchasing power parity, namely that
p1 — p2 and e, have equal but opposite coefficients in both cointegrating vectors, is not rejected:
x>(2) = 4.38 (p-value: 0.11) (without the trend, it would be strongly rejected).

6. CONCLUSION

We have derived a convenient way to tabulate the distribution of cointegration tests in the presence
of additional stationary regressors, analysed by Seo (1998). The proposed method is very accurate,
and avoids the need for interpolation required with previous tabulations. In addition, the method
is compact and easy-to-use, making it suitable for application in computer programs. Moreover,
we tabulated the most commonly used treatments of deterministic terms, which have not yet
been available.

We considered an application to a model investigating UK purchasing power. The test that we
tabulated requires estimates of nuisance parameters. We also considered the approach of Rahbek
and Mosconi (1999), which has the benefit of avoiding the nuisance parameters. Whether this is
sufficient reason to prefer this method over the approach of Seo is an open question, since it is not
clear what the loss of power of the Rahbek—Mosconi approach is in typical applications. In our
application it was small, but only after more careful modelling. Now, at least, we can do inference

Table III. p-Values for the tests Tr, Q7 and Sy

r p=n-—r Trace test 1 —Pr(Ty) 1 —Pr(Qr) Trace test 1 —Pr(Sy)
0 5 171.6 0.000 0.000 176.3 0.000
1 4 73.5 0.005 0.003 78.3 0.018
2 3 41.2 0.072 0.043 45.0 0.137
3 2 16.4 0.468 0.352 18.9 0.566
4 1 3.22 0.841 0.820 347 0.932
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in the Seo framework more easily using our approximation.” Finally, our approximation will also
be useful in other settings where no alternative is readily available, in particular when testing for
a unit root or cointegration in models with non-Gaussian or GARCH errors.
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