Dear forum, 

 

in "Chaing, Wang (2013): Volatility contagion: A range-based volatility approach" the authors specify a 'new' model for volatility forecasting. Simply put, 

 

eps ~ logNormal(-0.5*sigma^2, sigma^2)

volatility[t] = lambda[t] * eps[t]

lambda[t] = c + a*volatility[t-1] + b*lambda[t-1]

 

 

I try to estimate the (1,1) specification of the model with

 

<hansl>

scalar c_ = 0.1

scalar rng = 0.1

scalar err = 0.2

scalar sigma = 0.36

 

mle ll = -0.5*ln(2 * pi) - 0.5 * ln( sigma ^ 2 ) - ln(sqrtPark) - 0.5 * ( (( ln(sqrtPark) - ln(lambda) - sigma^2/2)^2 ) / sigma ^ 2 )

 

    series lambda = mean(sqrtPark)

    series lambda = c_ + rng * sqrtPark(-1) + err * lambda(-1)

 

    params sigma c_ rng err

end mle --robust  

</hansl>

 

 

Estimation results are the following and everything seems all right

 

Model 6: ML, using observations 2007-12-11:2013-06-17 (T = 1440)

ll = -0.5*ln(2 * pi) - 0.5 * ln( sigma ^ 2 ) - ln(sqrtPark) - 0.5 * ( (( ln(sqrtPark) - ln(lambda) - sigma^2/2)^2 ) / sigma ^ 2 )

Standard errors based on Hessian

 

                 estimate       std. error          z          p-value 

  -----------------------------------------------------------------------------------------

  sigma      0.360439      0.00671545     53.67    0.0000       ***

  c_           7.26934e-05  2.98068e-05    2.439    0.0147       **

  rng          0.0930949     0.0121914      7.636     2.24e-014  ***

  err           0.881256      0.0163204       54.00    0.0000       ***

 

Log-likelihood       6803.599   Akaike criterion    −13599.20

Schwarz criterion   −13578.11   Hannan-Quinn        −13591.32

However, when I produce in-sample fits, this model's fit is "biased". A comparison of in-sample fits of a similar model (with eps[t] being exponentially distributed) can be found at https://dl.dropboxusercontent.com/u/84870456/gretl.png . The blue line is simply "way below" the green one. The green one is nearly the same in-sample fit as the one from a HAR model (i.e. the green line is a verified good fit).The red line is the target variable.  To solve the riddle I estimated this model in Julia and got completely opposite results. Julia gets different estimates and the resulting in-sample fit is "way above" what it should be. A comparison of in-sample fits from julia can befound at  https://dl.dropboxusercontent.com/u/84870456/julie.JPG . 
My question would thus be whether you have any idea why this model behaves so wierdly. Specifications with exponentially or weibull distributed eps[t] run and fit just fine in both softwares.
Any hint is much appreciated, 
Daniel