I found that it is easy to make program in Gretl system. It is more easy
than SAS system. When I write Gretl script, I use help to find the right
syntax.
Here is the result of my program weightarea.gdt
gretl version 1.9.11
Current session: 2012-12-31 12:38
? open e:\weightarea.xls
Listing 7 variables:
0) const 1) weight 2) area 3) length 4) width
5) hightf 6) hightb
? summary weight area
Mean Median Minimum Maximum
weight 212.50 212.50 25.500 399.50
area 4640.8 4640.8 550.60 8731.0
Std. Dev. C.V. Skewness Ex. kurtosis
weight 110.34 0.51926 -5.0141e-021 -1.2005
area 2413.5 0.52006 2.2017e-015 -1.2005
5% perc. 95% perc. IQ range Missing obs.
weight 39.250 385.75 192.50 0
area 851.35 8430.3 4210.5 0
? print "weight area dataset"
weight area dataset
? print weight area
weight:
Full data range: 1 - 69 (n = 69)
25.5000 31.0000 36.5000 42.0000 47.5000 53.0000 58.5000 64.0000
69.5000 75.0000 80.5000 86.0000 91.5000 97.0000 102.500 108.000
113.500 119.000 124.500 130.000 135.500 141.000 146.500 152.000
157.500 163.000 168.500 174.000 179.500 185.000 190.500 196.000
201.500 207.000 212.500 218.000 223.500 229.000 234.500 240.000
245.500 251.000 256.500 262.000 267.500 273.000 278.500 284.000
289.500 295.000 300.500 306.000 311.500 317.000 322.500 328.000
333.500 339.000 344.500 350.000 355.500 361.000 366.500 372.000
377.500 383.000 388.500 394.000 399.500
area:
Full data range: 1 - 69 (n = 69)
550.600 670.900 791.200 911.500 1031.80 1152.10 1272.40 1392.70
1513.00 1633.30 1753.60 1873.90 1994.20 2114.50 2234.80 2355.10
2475.40 2595.70 2716.00 2836.30 2956.60 3076.90 3197.20 3317.50
3437.80 3558.10 3678.40 3798.70 3919.00 4039.30 4159.60 4279.90
4400.20 4520.50 4640.80 4761.10 4881.40 5001.70 5122.00 5242.30
5362.60 5482.90 5603.20 5723.50 5843.80 5964.10 6084.40 6204.70
6325.00 6445.30 6565.60 6685.90 6806.20 6926.50 7046.80 7167.10
7287.40 7407.70 7528.00 7648.30 7768.60 7888.90 8009.20 8129.50
8249.80 8370.10 8490.40 8610.70 8731.00
? ols area 0 weight
Model 1: OLS, using observations 1-69
Dependent variable: area
coefficient std. error t-ratio p-value
-------------------------------------------------------------
const â7.15455 7.27347e-013 â9.836e+012 0.0000 ***
weight 21.8727 0.000000 7.189e+015 0.0000 ***
Mean dependent var 4640.800 S.D. dependent var 2413.507
Sum squared resid 5.13e-22 S.E. of regression 2.77e-12
R-squared 1.000000 Adjusted R-squared 1.000000
Log-likelihood 1739.390 Akaike criterion â3474.781
Schwarz criterion â3470.312 Hannan-Quinn â3473.008
Nabil Brandl
<
http://nabilnabil.homestead.com/> http://nabilnabil.homestead.com