Thanks a lot, Allin and Sven.
I will try to get an answer from R metrics core team (maitainers of
fUnitRoot package), if  I will get it, I will post it
2012/7/5 Sven Schreiber <svetosch(a)gmx.net>
 Am 05.07.2012 16:02, schrieb Allin Cottrell:
 > On Thu, 5 Jul 2012, JOSE FRANCISCO PERLES RIBES wrote:
 >
 >> I'm doing a unit root test ADF with Gretl on a series of tourism market
 >> share of Spain specified with constant and trend.
 >> By comparing the results with Eviews or R (package fUnitRoot) I get
 >> the same
 >> t-statistic, but although both programs indicate that the critical
 values
 >> are McKinnon (1996) MacKinnon, J. G. (1996) "Numerical distribution
 >> functions for unit root and cointegration tests", Journal of Applied
 >> Econometrics 11: 601-618.
 >> p-values of the test are very different in either case .
 >> Gretl: t = -3.62 p-value 0.02 asymptotic
 >> Eviews t = -3.62 p-value (one-sided) = 0.04 which is the same value
 >> obtained in R.
 >
 > You should find that if you do a non-augmented Dickey-Fuller test (no
 > lagged differences) the P-values given by gretl agree with those from
 > R's fUnitRoots package. If you run an augmented test, gretl
 > automatically gives the asymptotic P-value, while it appears that
 > fUnitRoots is giving the finite-sample value for the sample size used
 > (and I suppose Eviews is doing the same). I verified this on some
 > examples, using MacKinnon's urcdist program.
 >
 > I believe gretl is doing the right thing here. In his 1996 JAE article
 > MacKinnon says, "Since the finite-sample P-values are valid only for
 > non-augmented Dickey-Fuller tests, it is probably wise to ignore them
 > for ADF tests..."
 >
 I'm not sure if the conventional wisdom on this has changed after 1996,
 but this looks like a great example of how thoughtful even the details
 in gretl are. I very much doubt that R's fUnitRoots has a similar
 justification in the background, let alone Eviews, but it would be
 interesting to find out -- Jose, if you get an answer from those people,
 it would be nice if you could post it here as well.
 cheers,
 sven
 _______________________________________________
 Gretl-users mailing list
 Gretl-users(a)lists.wfu.edu
 
http://lists.wfu.edu/mailman/listinfo/gretl-users