Yeap
It doesn't use the constant:(
In adition i don't understand the meaning of the r-squared when the regression has no
constant :(
Sent from my iPhone
Apologize for the brevity/grammar/spelling
No dia 10/01/2014, às 18:18, "Riccardo (Jack) Lucchetti"
<r.lucchetti(a)univpm.it> escreveu:
> On Fri, 10 Jan 2014, Ana Amaro ISG wrote:
>
>
>
> Sent from my iPhone
> Apologize for the brevity/grammar/spelling
>
> No dia 10/01/2014, às 17:48, Sven Schreiber <svetosch(a)gmx.net> escreveu:
>
>> Am 10.01.2014 18:38, schrieb Ana Amaro ISG:
>>> Hi everyone
>>> I need some help on this topic:
>>> 1- simple model one regressor (x)
>>> 2- error is heteroskedastic (and residual analysis shows that the error
variance increases with x variable)
>>> 3- rerun the analysis dividing both model members by the sqrt(x) - no
constant
>>
>> why no constant here? usually you need to have good reasons for that --
>> if you had a constant in step 1, dividing everything by some number does
>> not eliminate the constant.
> When dividing the original constant by sqrt(x) the constant disapears:(
Sure?
<hansl>
nulldata 100
set seed 987
x = uniform()
e = normal()
y = x + e
ols y const x
modtest --white
sqrtx = sqrt(x)
ymod = y / sqrtx
cmod = 1 / sqrtx
ols ymod cmod sqrtx
modtest --white
</hansl>
here gives
<output>
Model 1: OLS, using observations 1-100
Dependent variable: y
coefficient std. error t-ratio p-value
--------------------------------------------------------
const −0.183247 0.195633 −0.9367 0.3512
x 1.77855 0.322094 5.522 2.75e-07 ***
Mean dependent var 0.750871 S.D. dependent var 1.119396
Sum squared resid 94.61446 S.E. of regression 0.982575
R-squared 0.237299 Adjusted R-squared 0.229516
F(1, 98) 30.49066 P-value(F) 2.75e-07
Log-likelihood −139.1259 Akaike criterion 282.2517
Schwarz criterion 287.4621 Hannan-Quinn 284.3604
? modtest --white
White's test for heteroskedasticity
OLS, using observations 1-100
Dependent variable: uhat^2
coefficient std. error t-ratio p-value
-------------------------------------------------------
const 1.13073 0.439983 2.570 0.0117 **
x −1.77980 2.08494 −0.8536 0.3954
sq_x 2.03353 1.96553 1.035 0.3034
Unadjusted R-squared = 0.016138
Test statistic: TR^2 = 1.613760,
with p-value = P(Chi-square(2) > 1.613760) = 0.446248
? sqrtx = sqrt(x)
Generated series sqrtx (ID 5)
? ymod = y / sqrtx
Generated series ymod (ID 6)
? cmod = 1 / sqrtx
Generated series cmod (ID 7)
? ols ymod cmod sqrtx
Model 2: OLS, using observations 1-100
Dependent variable: ymod
coefficient std. error t-ratio p-value
--------------------------------------------------------
cmod −0.0735086 0.118736 −0.6191 0.5373
sqrtx 1.56961 0.342301 4.585 1.34e-05 ***
Mean dependent var 0.923079 S.D. dependent var 1.916162
Sum squared resid 340.0252 S.E. of regression 1.862698
R-squared 0.242205 Adjusted R-squared 0.234472
F(2, 98) 15.66129 P-value(F) 1.25e-06
Log-likelihood −203.0863 Akaike criterion 410.1727
Schwarz criterion 415.3830 Hannan-Quinn 412.2814
? modtest --white
White's test for heteroskedasticity
OLS, using observations 1-100
Dependent variable: uhat^2
coefficient std. error t-ratio p-value
-------------------------------------------------------
cmod 12.3469 19.7685 0.6246 0.5337
sqrtx −14.3832 121.333 −0.1185 0.9059
sq_cmod −1.25675 1.57423 −0.7983 0.4267
X1_X2 −12.8604 78.7441 −0.1633 0.8706
sq_sqrtx 18.2010 62.4175 0.2916 0.7712
Unadjusted R-squared = 0.339279
Test statistic: TR^2 = 33.927864,
with p-value = P(Chi-square(4) > 33.927864) = 0.000001
</output>
-------------------------------------------------------
Riccardo (Jack) Lucchetti
Dipartimento di Scienze Economiche e Sociali (DiSES)
Università Politecnica delle Marche
(formerly known as Università di Ancona)
r.lucchetti(a)univpm.it
http://www2.econ.univpm.it/servizi/hpp/lucchetti
-------------------------------------------------------
_______________________________________________
Gretl-users mailing list
Gretl-users(a)lists.wfu.edu
http://lists.wfu.edu/mailman/listinfo/gretl-users