Many texts (e.g. Hayashi (2002), Econometrics, Princeton University
Press, from page 644) give a fuller account of this test than would be
possible in a forum such as this. I would have several questions. If
your series are oil prices should you have a trend in your unit root
tests. The critical values for the residual based test of
cointegration are different from those for unit value tests. If they
are oil prices it is possible that there is more than one
cointegration relationship and the Johansen procedure might be more
appropriate.
The economic theory on which your assumption of cointegration is based
is important in determining cointegration.
Best regards
John
On 27 July 2010 16:40, Farmer, Jesse <Jesse.Farmer(a)kochind.com> wrote:
Hello:
I am doing a test for cointegration across 5 time-series variables. I've
run the test but I am not sure how to interpret the output. Could someone
tell me if my data is exhibiting cointegration, and if so, how did you
determine that? I realize this is a n00b question, so apologies in advance.
Thanks!
My output below:
-----------------
Step 1: testing for a unit root in Var1
Augmented Dickey-Fuller test for Var1
including 5 lags of (1-L)api2
sample size 517
unit-root null hypothesis: a = 1
test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
1st-order autocorrelation coeff. for e: 0.004
lagged differences: F(5, 510) = 7.952 [0.0000]
estimated value of (a - 1): -0.00320084
test statistic: tau_c(1) = -1.10968
asymptotic p-value 0.7144
Step 2: testing for a unit root in Var2
Augmented Dickey-Fuller test for Var2
including 5 lags of (1-L)base
sample size 517
unit-root null hypothesis: a = 1
test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
1st-order autocorrelation coeff. for e: 0.001
lagged differences: F(5, 510) = 2.011 [0.0756]
estimated value of (a - 1): -0.00202185
test statistic: tau_c(1) = -0.612473
asymptotic p-value 0.8656
Step 3: testing for a unit root in Var3
Augmented Dickey-Fuller test for Var3
including 5 lags of (1-L)peak
sample size 517
unit-root null hypothesis: a = 1
test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
1st-order autocorrelation coeff. for e: 0.002
lagged differences: F(5, 510) = 2.565 [0.0263]
estimated value of (a - 1): -0.0015613
test statistic: tau_c(1) = -0.535532
asymptotic p-value 0.8819
Step 4: testing for a unit root in Var4
Augmented Dickey-Fuller test for Var4
including 5 lags of (1-L)nbp
sample size 517
unit-root null hypothesis: a = 1
test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
1st-order autocorrelation coeff. for e: 0.001
lagged differences: F(5, 510) = 5.671 [0.0000]
estimated value of (a - 1): -0.0011618
test statistic: tau_c(1) = -0.431389
asymptotic p-value 0.9016
Step 5: testing for a unit root in Var5
Augmented Dickey-Fuller test for Var5
including 5 lags of (1-L)brent
sample size 517
unit-root null hypothesis: a = 1
test with constant
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
1st-order autocorrelation coeff. for e: 0.001
lagged differences: F(5, 510) = 1.759 [0.1196]
estimated value of (a - 1): -0.00386803
test statistic: tau_c(1) = -1.05127
asymptotic p-value 0.7369
Step 6: cointegrating regression
Cointegrating regression -
OLS, using observations 2008/01/02-2010/01/01 (T = 523)
Dependent variable: api2
coefficient std. error t-ratio p-value
---------------------------------------------------------
const -35.8323 1.81277 -19.77 3.20e-065 ***
base 1.58498 0.321094 4.936 1.08e-06 ***
peak -0.701765 0.225461 -3.113 0.0020 ***
nbp 0.848089 0.0617052 13.74 7.18e-037 ***
brent 0.686534 0.0279061 24.60 4.14e-089 ***
Mean dependent var 109.5593 S.D. dependent var 35.61656
Sum squared resid 16623.86 S.E. of regression 5.665015
R-squared 0.974895 Adjusted R-squared 0.974701
Log-likelihood -1646.637 Akaike criterion 3303.274
Schwarz criterion 3324.571 Hannan-Quinn 3311.615
rho 0.946380 Durbin-Watson 0.103074
Step 7: testing for a unit root in uhat
Augmented Dickey-Fuller test for uhat
including 5 lags of (1-L)uhat
sample size 517
unit-root null hypothesis: a = 1
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
1st-order autocorrelation coeff. for e: -0.001
lagged differences: F(5, 511) = 3.361 [0.0054]
estimated value of (a - 1): -0.0533006
test statistic: tau_c(5) = -3.60562
asymptotic p-value 0.2762
There is evidence for a cointegrating relationship if:
(a) The unit-root hypothesis is not rejected for the individual variables.
(b) The unit-root hypothesis is rejected for the residuals (uhat) from the
cointegrating regression.
_______________________________________________
Gretl-users mailing list
Gretl-users(a)lists.wfu.edu
http://lists.wfu.edu/mailman/listinfo/gretl-users
--
John C Frain
Economics Department
Trinity College Dublin
Dublin 2
Ireland
www.tcd.ie/Economics/staff/frainj/home.html
mailto:frainj@tcd.ie
mailto:frainj@gmail.com