Actually, I just see that their is some error in the function.
Artur
Am 16.04.2016 um 11:47 schrieb Artur T.:
Thank you Sven!
I also wrote down the following little function as an attempt to
circumvent the zero-division problem.
<hansl>
function matrix FcStat(series y, series fc)
list all = y fc
if sum(missing(all))
print "found missings, aborting"
return {1}
endif
set warnings off
matrix out = zeros(6,1)
matrix mtemp = fcstats(y,fc)
out[1:3] = mtemp[1:3] # These criteria always work fine
series e = y-fc
# MPE
series ey = e/y
ey = misszero(ey)
matrix out[4] = 100*meanc({ey}) # contains only valid values
# MAPE
series ey = abs(e)/y
ey = misszero(ey)
matrix out[5] = 100*meanc({ey})
# Theil's U
series num = (e/y(-1))^2
num = misszero(num)
num[1] = NA # 1st obs. is NA
scalar mnum = mean({num})
series den = ( (y-y(-1)) / y )^2
den = misszero(den)
mden = mean({den})
matrix out[6] = mnum/mden
return out
end function
</hansl>s
Am 15.04.2016 um 11:44 schrieb Sven Schreiber:
> Am 15.04.2016 um 11:28 schrieb Artur T.:
>> It would be fine if you would share it. Thanks in advance, Sven.
>>
>
> I hope this is what we're talking about:
>
> <hansl>
> function matrix otherfcstats(series y, series fc)
> list all = y fc
> if sum(missing(all))
> print "--otherfcstats(): found missings, aborting"
> return {1}
> endif
>
> matrix mtemp = fcstats(y,fc)
> # Root mean square error, mean abs. error
> matrix out = sqrt(mtemp[2]) | mtemp[3]
>
> # now the manual TheilU calculation
> matrix my = {y}
> matrix mfc = {fc}
> numerator = sqrt(mean((my-mfc).^2))
> denom = sqrt(mean(mfc.^2)) + sqrt(mean(my.^2))
> matrix out |= numerator/denom
>
> return out
> end function
> </hansl>
>
> hth,
> sven
> _______________________________________________
> Gretl-users mailing list
> Gretl-users(a)lists.wfu.edu
>
http://lists.wfu.edu/mailman/listinfo/gretl-users