2007/10/5, Riccardo (Jack) Lucchetti <r.lucchetti(a)univpm.it>:
>>On Fri, 5 Oct 2007, yinung CYCU wrote:
>>Could you please try to see what happens by appending the --verbose
switch
>>to mle?
Yes. Please see below and thanks.
Yi-Nung Yang
Chung Yuan Christian University, Taiwan
========================================
gretl version 1.6.5
Current session: 2007/10/05 10:28
? open djclose
Read datafile c:\progra~1\userdata\gretl-1.6.5\data\misc\djclose.gdt
periodicity: 5, maxobs: 2528,
observations range: 1980/01/02-1989/12/29
Listing 2 variables:
0) const 1) djclose
? series y = 100*ldiff(djclose)
Generated series y (ID 2)
? scalar mu = 0.0
Generated scalar mu (ID 3) = 0
? scalar omega = 1
Generated scalar omega (ID 4) = 1
? scalar alpha = 0.4
Generated scalar alpha (ID 5) = 0.4
? scalar beta = 0.5
Generated scalar beta (ID 6) = 0.5
? mle ll = -0.5*(log(h) + (e^2)/h)
? series e = y - mu
? series h = var(y)
? series h = omega + alpha*(e(-1))^2 + beta*h(-1)
? params mu omega alpha beta
? end mle --verbose
Using numerical derivatives
Iteration 1: Log-likelihood = -1561.46147443
Parameters: 0.00000 1.0000 0.40000 0.50000
Gradients: 89.979 -296.97 -181.84 -396.60
Iteration 2: Log-likelihood = -1472.96367506 (steplength = 0.00032)
Parameters: 0.028793 0.90497 0.34181 0.37309
Gradients: 53.018 -274.09 -163.79 -366.04
Iteration 3: Log-likelihood = -1447.77404259 (steplength = 0.00032)
Parameters: -0.064045 0.85520 0.32585 0.30662
Gradients: 231.08 -235.92 -149.60 -315.06
Iteration 4: Log-likelihood = -1444.66210893 (steplength = 0.008)
Parameters: -0.048367 0.80389 0.50576 0.23805
Gradients: 219.45 -197.62 -190.94 -263.91
Iteration 5: Log-likelihood = -1400.66087235 (steplength = 0.04)
Parameters: -0.020901 0.76422 0.39267 0.18469
Gradients: 177.60 -130.52 -156.37 -174.31
Iteration 6: Log-likelihood = -1378.72010975 (steplength = 0.2)
Parameters: 0.0018002 0.75301 0.26579 0.16997
Gradients: 133.04 -86.134 -62.471 -115.03
Iteration 7: Log-likelihood = -1375.43661347 (steplength = 1)
Parameters: 0.088888 0.69792 0.23498 0.095992
Gradients: -74.989 112.68 41.097 150.49
Iteration 8: Log-likelihood = -1370.89509923 (steplength = 1)
Parameters: 0.064386 0.73628 0.22325 0.14732
Gradients: -10.259 -30.131 17.878 -40.239
Iteration 9: Log-likelihood = -1370.84179073 (steplength = 1)
Parameters: 0.053937 0.72411 0.26523 0.13111
Gradients: 15.082 -5.7174 -39.239 -7.6353
Iteration 10: Log-likelihood = -1370.28526304 (steplength = 1)
Parameters: 0.056917 0.72388 0.23809 0.13085
Gradients: 7.8871 4.6573 2.7641 6.2198
Iteration 11: Log-likelihood = -1370.26428037 (steplength = 0.00032)
Parameters: 0.059441 0.72537 0.23898 0.13284
Gradients: 1.6561 -0.82962 -0.38197 -1.1079
Iteration 12: Log-likelihood = -1370.26343966 (steplength = 0.00032)
Parameters: 0.060046 0.72515 0.23888 0.13254
Gradients: 0.17639 -0.021055 0.026967 -0.028467
Iteration 13: Log-likelihood = -1370.26343939 (steplength = 0.00032)
Parameters: 0.060046 0.72515 0.23889 0.13253
Gradients: 0.17676 -0.018224 0.011653 -0.024374
Iteration 14: Log-likelihood = -1370.26343279 (steplength = 1)
Parameters: 0.060119 0.72501 0.23890 0.13262
Gradients: -0.0018076 0.00079581 -0.0017053 0.0013415
Iteration 14: Log-likelihood = -1370.26343279 (steplength = 0.2)
Parameters: 0.060119 0.72499 0.23890 0.13263
Gradients: -0.0018076 0.00079581 -0.0017053 0.0013415
--- FINAL VALUES:
Iteration 14: Log-likelihood = -1370.26343279 (steplength = 0.00032)
Parameters: 0.060118 0.72499 0.23890 0.13263
Gradients: -0.0018076 0.00079581 -0.0017053 0.0013415
Tolerance = 1.81899e-012
Function evaluations: 53
Evaluations of gradient: 14
Model 1: ML estimates using the 2526 observations 80/01/04-89/12/29
ll = -0.5*(log(h) + (e^2)/h)
Standard errors based on Outer Products matrix
PARAMETER ESTIMATE STDERROR T STAT P-VALUE
mu 0.0601181 0.0200801 2.994 0.00275 ***
omega 0.724990 233390 0.000 1.00000
alpha 0.238901 0.00564566 42.316 <0.00001 ***
beta 0.132635 174763 0.000 1.00000
Log-likelihood = -1370.26
Akaike information criterion (AIC) = 2748.53
Schwarz Bayesian criterion (BIC) = 2771.86
Hannan-Quinn criterion (HQC) = 2757