Dear GRTEL users,
I have estimated the follwing models
1) ARIMAX of order (2,1,0) with additional constant for the dependent variable GMSL_CW
(endogenous) and the independent variable GISS_GSST (exogenous) (arima 2 1 0; GMSL_CW
const GISS_GSST)
Function evaluations: 24
Evaluations of gradient: 8
Model 4: ARMAX, using observations 1881-2001 (T = 121)
Estimated using Kalman filter (exact ML)
Dependent variable: (1-L) GMSL_CW
Standard errors based on Hessian
coefficient std. error t-ratio p-value
---------------------------------------------------------
const 1.69314 0.281737 6.010 1.86e-09 ***
phi_1 -0.361518 0.0878460 -4.115 3.87e-05 ***
phi_2 -0.250534 0.0898182 -2.789 0.0053 ***
GSST_GISS 3.72863 1.36854 2.725 0.0064 ***
Mean dependent var 1.497521 S.D. dependent var 5.290911
Mean of innovations -0.015051 S.D. of innovations 4.819733
Log-likelihood -362.0990 Akaike criterion 734.1979
Schwarz criterion 748.1769 Hannan-Quinn 739.8753
Real Imaginary Modulus Frequency
-----------------------------------------------------------
AR
Root 1 -0.7215 -1.8630 1.9979 -0.3088
Root 2 -0.7215 1.8630 1.9979 0.3088
-----------------------------------------------------------
2) ARIMAX of order (2,0,0) with additional constant for the dependent variable
d_GMSL_CW/dt (endogenous) and the independent variable GISS_GSST (exogenous) (arima 2 0 0;
d_GMSL_CW const GISS_GSST)
Function evaluations: 26
Evaluations of gradient: 8
Model 5: ARMAX, using observations 1881-2001 (T = 121)
Estimated using Kalman filter (exact ML)
Dependent variable: d_GMSL_CW
Standard errors based on Hessian
coefficient std. error t-ratio p-value
---------------------------------------------------------
const 1.69314 0.281737 6.010 1.86e-09 ***
phi_1 -0.361518 0.0878464 -4.115 3.87e-05 ***
phi_2 -0.250534 0.0898208 -2.789 0.0053 ***
GSST_GISS 3.72863 1.36860 2.724 0.0064 ***
Mean dependent var 1.497521 S.D. dependent var 5.290911
Mean of innovations -0.015052 S.D. of innovations 4.819733
Log-likelihood -362.0990 Akaike criterion 734.1979
Schwarz criterion 748.1769 Hannan-Quinn 739.8753
Real Imaginary Modulus Frequency
-----------------------------------------------------------
AR
Root 1 -0.7215 -1.8630 1.9979 -0.3088
Root 2 -0.7215 1.8630 1.9979 0.3088
-----------------------------------------------------------
As expected the estimated model parameters are identical in both cases as GRETL estimates
the differenced model 1) with an additional constant. However, I could not explain how
GRETL computes the fitted values and residuals for the levels (not the differences) in
model 1). I was expecting the fitted values of model 1) to be the cumulated sums of fitted
values of model 2). So, I wonder how GRETL recovers the fitted values from the estimated
model parameters (const, phi_1, phi_2, GSST_GISS) in ARIMAX case with differencing?
Cheers, Didier