Thank you for your prompt response!Below, I copied the gretl syntax (restrictions and
bootstrap). I also copied the gretl output. And yes, I installed the latest version from
the gretl site.Sincerely,Jay
BQModel = SVAR_setup("C", X, exog, maxlag)BQModel["horizon"]=20
SVAR_restrict(&BQModel, "lrC", 1,2,0)SVAR_restrict(&BQModel,
"lrC", 1,3,0)SVAR_restrict(&BQModel, "lrC",
1,4,0)SVAR_restrict(&BQModel, "lrC", 1,5,0)
SVAR_restrict(&BQModel, "C", 1,3,0)SVAR_restrict(&BQModel,
"C", 1,4,0)SVAR_restrict(&BQModel, "C",
1,5,0)SVAR_restrict(&BQModel, "C", 3,5,0)SVAR_restrict(&BQModel,
"C", 4,5,0)SVAR_restrict(&BQModel, "C", 5,3,0)
SVAR_cumulate(&BQModel, 1)SVAR_cumulate(&BQModel, 2)SVAR_cumulate(&BQModel,
3)SVAR_cumulate(&BQModel, 4)SVAR_cumulate(&BQModel, 5)
SVAR_estimate(&BQModel)
bfail = SVAR_boot(&BQModel, 2000, 0.9, 0)
?SVAR_estimate(&BQModel)
UnconstrainedSigma:
0.00004 0.00000 0.00071 0.00059 0.00014
0.00000 0.00000 0.00010 0.00364 0.00000
0.00071 0.00010 0.11088 0.24597 0.00347
0.00059 0.00364 0.24597 159.92282 -0.00971
0.00014 0.00000 0.00347 -0.00971 0.00084
Long-run matrixC(1) =
0.7736 -1.5321 0.0135 0.0001 0.1158
0.1695 1.4970 0.0076 0.0001 0.0254
-72.3749 -90.8705 2.9837 0.0254 15.0368
305.4149 -1451.6624 -17.4910 0.7748 -14.4628
-0.4012 -13.7671 0.0605 0.0006 1.6212
Optimizationmethod = Scoring algorithm
coefficient std. error z p-value
--------------------------------------------------------------
C[ 1; 1] 0.00520873 0.000629939 8.269 1.36e-016 ***
C[ 2; 1] -0.000263129 0.000231818 -1.135 0.2563
C[ 3; 1] 0.223805 0.0378243 5.917 3.28e-09 ***
C[ 4; 1] 1.58688 1.62616 0.9758 0.3291
C[ 5; 1] 0.0237545 0.00304730 7.795 6.43e-015 ***
C[ 1; 2] -0.00320062 0.000292175 -10.95 6.33e-028 ***
C[ 2; 2] -0.000529455 0.000225448 -2.348 0.0189 **
C[ 3; 2] 0.141552 0.0290911 4.866 1.14e-06 ***
C[ 4; 2] 2.39856 1.60483 1.495 0.1350
C[ 5; 2] -0.00460859 0.00209923 -2.195 0.0281 **
C[ 1; 3] 0.00000 0.00000 NA NA
C[ 2; 3] 0.000120530 0.000476143 0.2531 0.8002
C[ 3; 3] 0.114847 0.0437330 2.626 0.0086 ***
C[ 4; 3] -11.2260 1.65104 -6.799 1.05e-011 ***
C[ 5; 3] 0.00000 0.00000 NA NA
C[ 1; 4] 0.00000 0.00000 NA NA
C[ 2; 4] 0.00131884 0.000186939 7.055 1.73e-012 ***
C[ 3; 4] 0.166040 0.0362217 4.584 4.56e-06 ***
C[ 4; 4] 5.06246 3.24872 1.558 0.1192
C[ 5; 4] -0.00717976 0.00194941 -3.683 0.0002 ***
C[ 1; 5] 0.00000 0.00000 NA NA
C[ 2; 5] 0.00107498 9.81318e-05 10.95 6.33e-028 ***
C[ 3; 5] 0.00000 0.00000 NA NA
C[ 4; 5] 0.00000 0.00000 NA NA
C[ 5; 5] 0.0142210 0.00129819 10.95 6.33e-028 ***
Log-likelihood = 413.11
? bfail = SVAR_boot(&BQModel, 2000, 0.9, 0)
Bootstrapping model (2000 iterations)
errcode = 32
errcode = 32
errcode = 32
errcode = 32
errcode = 32
errcode = 32
errcode = 32
errcode = 32
Warning: couldn't improve criterion (gradient = 2.25191)
errcode = 32
errcode = 32
errcode = 32
errcode = 32
errcode = 32
Bootstrap results (2000 replications, 0 failed)
coefficient std. error z p-value
----------------------------------------------------------
C[ 1; 1] 0.00153498 0.00411606 0.3729 0.7092
C[ 2; 1] 2.14368e-05 0.000533545 0.04018 0.9680
C[ 3; 1] 0.0748155 0.171772 0.4356 0.6632
C[ 4; 1] 2.02507 1.62786 1.244 0.2135
C[ 5; 1] 0.00678030 0.0184051 0.3684 0.7126
C[ 1; 2] -0.000957296 0.00313491 -0.3054 0.7601
C[ 2; 2] 4.25591e-05 0.000707832 0.06013 0.9521
C[ 3; 2] 0.0331823 0.101026 0.3285 0.7426
C[ 4; 2] 2.80113 2.28712 1.225 0.2207
C[ 5; 2] -0.00259911 0.00885520 -0.2935 0.7691
C[ 1; 3] 0.00000 0.00000 NA NA
C[ 2; 3] -0.000110869 0.000565895 -0.1959 0.8447
C[ 3; 3] 0.0287889 0.143152 0.2011 0.8406
C[ 4; 3] -7.72066 3.47706 -2.220 0.0264 **
C[ 5; 3] 0.00000 0.00000 NA NA
C[ 1; 4] 0.00000 0.00000 NA NA
C[ 2; 4] 0.000248349 0.000768865 0.3230 0.7467
C[ 3; 4] 0.0170406 0.147616 0.1154 0.9081
C[ 4; 4] 5.01946 3.53079 1.422 0.1551
C[ 5; 4] -0.00276044 0.00696356 -0.3964 0.6918
C[ 1; 5] 0.00000 0.00000 NA NA
C[ 2; 5] 0.000545628 0.000746872 0.7306 0.4651
C[ 3; 5] 0.00000 0.00000 NA NA
C[ 4; 5] 0.00000 0.00000 NA NA
C[ 5; 5] 0.0114515 0.00396175 2.891 0.0038 ***
On Tuesday, August 2, 2016 7:01 PM, Sven Schreiber <svetosch(a)gmx.net> wrote:
Am 03.08.2016 um 00:16 schrieb jayeryu:
2. There is a red flag for the short and long run restrictions,
though.
I put the two restrictions simultaneously but the results are widely
different from what my coauthor obtained from RATS and GAUSS.
Thanks for reporting your case.
The result from gretl shows a C matrix that looks like one that just
superimposed short and long run matrices in a way that any 0 values in
either of the two matrices replaced the relevant element of the C.
It would be useful if you could copy&paste your restrictions and the C
matrix that gretl shows.
In case you're not using the latest gretl version please also add that
information.
Thanks,
sven
_______________________________________________
Gretl-users mailing list
Gretl-users(a)lists.wfu.edu
http://lists.wfu.edu/mailman/listinfo/gretl-users