when i estimate the garch parameter of cj stock price during 1 year data
using gretl and R.
IN Gnu-R.
garch(x,c(1,1))
***** ESTIMATION WITH ANALYTICAL GRADIENT *****
I INITIAL X(I) D(I)
1 0.389259E-03 0.100E+01
2 0.500000E-01 0.100E+01
3 0.500000E-01 0.100E+01
IT NF F RELDF PRELDF RELDX STPPAR D*STEP
NPRELDF
0 1 -0.830E+03
1 8 -0.830E+03 0.43E-06 0.95E-06 0.1E-04 0.8E+09 0.1E-05
0.36E+03
2 18 -0.831E+03 0.13E-02 0.22E-02 0.5E+00 0.2E+01 0.1E+00
0.20E+00
3 21 -0.835E+03 0.48E-02 0.43E-02 0.7E+00 0.1E+01 0.4E+00
0.63E-01
4 23 -0.836E+03 0.19E-02 0.13E-02 0.4E-01 0.2E+01 0.4E-01
0.80E-01
5 26 -0.839E+03 0.27E-02 0.31E-02 0.9E-01 0.2E+01 0.1E+00
0.13E+01
6 27 -0.839E+03 0.88E-03 0.26E-02 0.8E-01 0.2E+01 0.1E+00
0.31E+00
7 36 -0.840E+03 0.50E-03 0.12E-02 0.6E-05 0.4E+01 0.8E-05
0.74E-02
8 37 -0.840E+03 0.29E-04 0.28E-04 0.5E-05 0.2E+01 0.8E-05
0.37E-02
9 38 -0.840E+03 0.36E-06 0.18E-05 0.5E-05 0.2E+01 0.8E-05
0.35E-02
10 46 -0.841E+03 0.11E-02 0.19E-02 0.5E-01 0.8E+00 0.7E-01
0.35E-02
11 48 -0.843E+03 0.22E-02 0.22E-02 0.4E-01 0.9E+00 0.7E-01
0.15E-01
12 50 -0.846E+03 0.41E-02 0.46E-02 0.7E-01 0.1E+01 0.1E+00
0.73E-01
13 52 -0.847E+03 0.14E-02 0.19E-02 0.2E-01 0.2E+01 0.5E-01
0.11E-01
14 53 -0.848E+03 0.14E-02 0.16E-02 0.2E-01 0.2E+01 0.5E-01
0.10E-01
15 55 -0.849E+03 0.23E-03 0.29E-03 0.3E-02 0.2E+01 0.5E-02
0.57E-02
16 58 -0.849E+03 0.90E-03 0.15E-02 0.2E-01 0.1E+01 0.3E-01
0.67E-02
17 60 -0.849E+03 0.55E-04 0.13E-03 0.4E-02 0.1E+01 0.1E-01
0.27E-03
18 62 -0.849E+03 0.24E-05 0.57E-05 0.8E-03 0.8E+00 0.2E-02
0.91E-05
19 64 -0.849E+03 0.11E-06 0.20E-05 0.3E-03 0.1E+01 0.7E-03
0.30E-05
20 65 -0.849E+03 0.23E-06 0.38E-06 0.1E-03 0.9E+00 0.3E-03
0.69E-06
21 78 -0.849E+03 -0.20E-12 0.48E-13 0.1E-13 0.2E+06 0.2E-13
0.23E-06
***** FALSE CONVERGENCE *****
FUNCTION -0.849489E+03 RELDX 0.114E-13
FUNC. EVALS 78 GRAD. EVALS 21
PRELDF 0.477E-13 NPRELDF 0.231E-06
I FINAL X(I) D(I) G(I)
1 0.167570E-05 0.100E+01 0.188E+04
2 0.630399E-01 0.100E+01 0.113E+01
3 0.944707E+00 0.100E+01 0.364E+00
Call:
garch(x = x, order = c(1, 1))
Coefficient(s):
a0 a1 b1
1.676e-06 6.304e-02 9.447e-01
Warning message:
NANs... in: sqrt(pred$e)
but in gretl
The convergence criterion was not met.
i read previous article 'convergence is not met' and i know two assistence.
first. Includeing suitable indepedent variable...
but i just want analysis only 245 data
second . transfomation
this data already log-diffrential transformation. how can i saw a result.
not adjust includeing variable.
thank u for reading my dumb mail. i wait you warth answer... ^^;
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE gretldata SYSTEM "gretldata.dtd">
<gretldata name="CJ" frequency="1" startobs="1"
endobs="247"
type="cross-section">
<variables count="3">
<variable name="price"
label="Stock Price"
displayname="Stock Price"
/>
<variable name="Return"
label="Return"
displayname="Return"
/>
<variable name="x"
label="x=obs"
/>
</variables>
<observations count="247" labels="false">
<obs>68300 -0.022207 1 </obs>
<obs>66800 0.008942 2 </obs>
<obs>67400 -0.007446 3 </obs>
<obs>66900 0.007446 4 </obs>
<obs>67400 0.004441 5 </obs>
<obs>67700 -0.010394 6 </obs>
<obs>67000 0.000000 7 </obs>
<obs>67000 -0.002990 8 </obs>
<obs>66800 -0.016604 9 </obs>
<obs>65700 -0.001523 10 </obs>
<obs>65600 0.000000 11 </obs>
<obs>65600 -0.004584 12 </obs>
<obs>65300 0.018210 13 </obs>
<obs>66500 0.004501 14 </obs>
<obs>66800 -0.012048 15 </obs>
<obs>66000 -0.007605 16 </obs>
<obs>65500 0.000000 17 </obs>
<obs>65500 -0.004591 18 </obs>
<obs>65200 0.000000 19 </obs>
<obs>65200 -0.003072 20 </obs>
<obs>65000 0.012233 21 </obs>
<obs>65800 0.013585 22 </obs>
<obs>66700 -0.016629 23 </obs>
<obs>65600 -0.009188 24 </obs>
<obs>65000 0.007663 25 </obs>
<obs>65500 0.000000 26 </obs>
<obs>65500 0.046242 27 </obs>
<obs>68600 0.015908 28 </obs>
<obs>69700 0.017070 29 </obs>
<obs>70900 0.000000 30 </obs>
<obs>70900 0.000000 31 </obs>
<obs>70900 0.008427 32 </obs>
<obs>71500 0.016644 33 </obs>
<obs>72700 0.025799 34 </obs>
<obs>74600 0.006680 35 </obs>
<obs>75100 -0.002667 36 </obs>
<obs>74900 0.043116 37 </obs>
<obs>78200 -0.012870 38 </obs>
<obs>77200 0.010309 39 </obs>
<obs>78000 -0.011606 40 </obs>
<obs>77100 -0.036992 41 </obs>
<obs>74300 0.026562 42 </obs>
<obs>76300 -0.019855 43 </obs>
<obs>74800 -0.004019 44 </obs>
<obs>74500 -0.006734 45 </obs>
<obs>74000 -0.004062 46 </obs>
<obs>73700 -0.033106 47 </obs>
<obs>71300 -0.015548 48 </obs>
<obs>70200 0.011332 49 </obs>
<obs>71000 0.025036 50 </obs>
<obs>72800 -0.004129 51 </obs>
<obs>72500 -0.020907 52 </obs>
<obs>71000 0.016760 53 </obs>
<obs>72200 -0.023827 54 </obs>
<obs>70500 -0.011412 55 </obs>
<obs>69700 -0.012997 56 </obs>
<obs>68800 -0.019076 57 </obs>
<obs>67500 0.021979 58 </obs>
<obs>69000 0.001448 59 </obs>
<obs>69100 0.031342 60 </obs>
<obs>71300 -0.009866 61 </obs>
<obs>70600 -0.015703 62 </obs>
<obs>69500 -0.007220 63 </obs>
<obs>69000 -0.010197 64 </obs>
<obs>68300 0.010197 65 </obs>
<obs>69000 0.029981 66 </obs>
<obs>71100 0.016737 67 </obs>
<obs>72300 0.000000 68 </obs>
<obs>72300 -0.002770 69 </obs>
<obs>72100 -0.006959 70 </obs>
<obs>71600 0.000000 71 </obs>
<obs>71600 -0.011236 72 </obs>
<obs>70800 0.000000 73 </obs>
<obs>70800 -0.011364 74 </obs>
<obs>70000 -0.037850 75 </obs>
<obs>67400 0.024910 76 </obs>
<obs>69100 -0.008721 77 </obs>
<obs>68500 -0.017674 78 </obs>
<obs>67300 -0.019505 79 </obs>
<obs>66000 0.029853 80 </obs>
<obs>68000 0.037522 81 </obs>
<obs>70600 0.000000 82 </obs>
<obs>70600 0.007057 83 </obs>
<obs>71100 0.016737 84 </obs>
<obs>72300 0.008265 85 </obs>
<obs>72900 0.006835 86 </obs>
<obs>73400 0.000000 87 </obs>
<obs>73400 -0.012337 88 </obs>
<obs>72500 0.000000 89 </obs>
<obs>72500 -0.008310 90 </obs>
<obs>71900 0.011065 91 </obs>
<obs>72700 0.004118 92 </obs>
<obs>73000 -0.002743 93 </obs>
<obs>72800 -0.011050 94 </obs>
<obs>72000 0.009675 95 </obs>
<obs>72700 0.000000 96 </obs>
<obs>72700 0.015017 97 </obs>
<obs>73800 -0.031661 98 </obs>
<obs>71500 0.019391 99 </obs>
<obs>72900 0.014976 100 </obs>
<obs>74000 -0.012237 101 </obs>
<obs>73100 0.029652 102 </obs>
<obs>75300 -0.003992 103 </obs>
<obs>75000 0.017185 104 </obs>
<obs>76300 -0.002625 105 </obs>
<obs>76100 -0.006592 106 </obs>
<obs>75600 -0.026811 107 </obs>
<obs>73600 0.000000 108 </obs>
<obs>73600 -0.008186 109 </obs>
<obs>73000 0.020340 110 </obs>
<obs>74500 0.002681 111 </obs>
<obs>74700 -0.009415 112 </obs>
<obs>74000 0.026668 113 </obs>
<obs>76000 0.014370 114 </obs>
<obs>77100 -0.001298 115 </obs>
<obs>77000 0.002594 116 </obs>
<obs>77200 -0.002594 117 </obs>
<obs>77000 -0.027652 118 </obs>
<obs>74900 -0.002674 119 </obs>
<obs>74700 -0.010767 120 </obs>
<obs>73900 -0.016371 121 </obs>
<obs>72700 0.004118 122 </obs>
<obs>73000 -0.002743 123 </obs>
<obs>72800 0.014997 124 </obs>
<obs>73900 -0.014997 125 </obs>
<obs>72800 -0.011050 126 </obs>
<obs>72000 -0.009770 127 </obs>
<obs>71300 0.005594 128 </obs>
<obs>71700 0.017969 129 </obs>
<obs>73000 -0.001371 130 </obs>
<obs>72900 0.008197 131 </obs>
<obs>73500 0.022866 132 </obs>
<obs>75200 -0.006671 133 </obs>
<obs>74700 -0.009415 134 </obs>
<obs>74000 -0.013606 135 </obs>
<obs>73000 -0.016575 136 </obs>
<obs>71800 0.000000 137 </obs>
<obs>71800 -0.006988 138 </obs>
<obs>71300 0.008380 139 </obs>
<obs>71900 -0.015417 140 </obs>
<obs>70800 -0.022858 141 </obs>
<obs>69200 -0.014556 142 </obs>
<obs>68200 0.011662 143 </obs>
<obs>69000 0.000000 144 </obs>
<obs>69000 0.005780 145 </obs>
<obs>69400 0.012885 146 </obs>
<obs>70300 -0.010007 147 </obs>
<obs>69600 0.002869 148 </obs>
<obs>69800 -0.021724 149 </obs>
<obs>68300 0.007294 150 </obs>
<obs>68800 0.002903 151 </obs>
<obs>69000 -0.002903 152 </obs>
<obs>68800 -0.030999 153 </obs>
<obs>66700 -0.007524 154 </obs>
<obs>66200 0.022406 155 </obs>
<obs>67700 -0.026948 156 </obs>
<obs>65900 -0.001519 157 </obs>
<obs>65800 0.004549 158 </obs>
<obs>66100 0.040035 159 </obs>
<obs>68800 0.002903 160 </obs>
<obs>69000 -0.013129 161 </obs>
<obs>68100 0.005857 162 </obs>
<obs>68500 0.000000 163 </obs>
<obs>68500 0.005822 164 </obs>
<obs>68900 -0.008746 165 </obs>
<obs>68300 0.010197 166 </obs>
<obs>69000 -0.008734 167 </obs>
<obs>68400 0.000000 168 </obs>
<obs>68400 -0.014728 169 </obs>
<obs>67400 0.002963 170 </obs>
<obs>67600 0.005900 171 </obs>
<obs>68000 0.008785 172 </obs>
<obs>68600 -0.005848 173 </obs>
<obs>68200 -0.011800 174 </obs>
<obs>67400 0.005917 175 </obs>
<obs>67800 -0.004435 176 </obs>
<obs>67500 0.024873 177 </obs>
<obs>69200 0.046586 178 </obs>
<obs>72500 0.016416 179 </obs>
<obs>73700 0.004062 180 </obs>
<obs>74000 0.001350 181 </obs>
<obs>74100 0.016065 182 </obs>
<obs>75300 -0.006662 183 </obs>
<obs>74800 0.030285 184 </obs>
<obs>77100 -0.001298 185 </obs>
<obs>77000 -0.026317 186 </obs>
<obs>75000 -0.004008 187 </obs>
<obs>74700 -0.006716 188 </obs>
<obs>74200 -0.005405 189 </obs>
<obs>73800 0.002706 190 </obs>
<obs>74000 -0.014976 191 </obs>
<obs>72900 0.014976 192 </obs>
<obs>74000 0.012089 193 </obs>
<obs>74900 -0.006698 194 </obs>
<obs>74400 0.004024 195 </obs>
<obs>74700 0.004008 196 </obs>
<obs>75000 -0.020203 197 </obs>
<obs>73500 -0.002725 198 </obs>
<obs>73300 0.006798 199 </obs>
<obs>73800 0.037238 200 </obs>
<obs>76600 0.024502 201 </obs>
<obs>78500 0.049700 202 </obs>
<obs>82500 0.000000 203 </obs>
<obs>82500 -0.030772 204 </obs>
<obs>80000 0.024693 205 </obs>
<obs>82000 0.015729 206 </obs>
<obs>83300 0.077361 207 </obs>
<obs>90000 0.005540 208 </obs>
<obs>90500 0.015351 209 </obs>
<obs>91900 -0.009842 210 </obs>
<obs>91000 0.027102 211 </obs>
<obs>93500 0.001069 212 </obs>
<obs>93600 0.066140 213 </obs>
<obs>100000 -0.004008 214 </obs>
<obs>99600 0.023811 215 </obs>
<obs>102000 0.084557 216 </obs>
<obs>111000 -0.018182 217 </obs>
<obs>109000 -0.037388 218 </obs>
<obs>105000 -0.028988 219 </obs>
<obs>102000 -0.029853 220 </obs>
<obs>99000 0.044452 221 </obs>
<obs>103500 -0.024451 222 </obs>
<obs>101000 -0.035268 223 </obs>
<obs>97500 0.020305 224 </obs>
<obs>99500 -0.025447 225 </obs>
<obs>97000 -0.020834 226 </obs>
<obs>95000 0.012552 227 </obs>
<obs>96200 0.033728 228 </obs>
<obs>99500 0.034571 229 </obs>
<obs>103000 -0.039609 230 </obs>
<obs>99000 0.039609 231 </obs>
<obs>103000 -0.009756 232 </obs>
<obs>102000 -0.029853 233 </obs>
<obs>99000 0.029853 234 </obs>
<obs>102000 -0.019803 235 </obs>
<obs>100000 0.000000 236 </obs>
<obs>100000 0.029559 237 </obs>
<obs>103000 -0.019608 238 </obs>
<obs>101000 0.009852 239 </obs>
<obs>102000 0.019418 240 </obs>
<obs>104000 -0.009662 241 </obs>
<obs>103000 0.014458 242 </obs>
<obs>104500 0.108704 243 </obs>
<obs>116500 0.042023 244 </obs>
<obs>121500 0.048202 245 </obs>
<obs>127500 0.030890 246 </obs>
<obs>131500 0.018833 247 </obs>
</observations>
</gretldata>