On Sat, 24 Jan 2015, Daniel Bencik wrote:
  
 Sven, 
  
 thanks. Regardless of how I try to see how this works, I cant figure it out. 
 The simplest LL I work with is 
  
 <hansl>
 mle ll =  -ln(lambda) - xDepVars[yIdx]/lambda
  
   series lambda = mean(xDepVars[yIdx])
   series lambda = c_ + rng * xExpVars[xIdx] + err * lambda(-1)
  
   params c_ rng err
   end mle --robust
 </hansl>  
The idea is to force certain quantities to be positive so that lambda 
cannot be negative, eg:
<hansl>
series y = xDepVars[yIdx]
series x = xDepVars[xIdx]
scalar m = mean(y) # assume this is positive 
matrix b = zeros(3,1)
mle ll =  -ln(lambda) - xDepVars[yIdx]/lambda
 	series lambda = m
 	scalar c_  = exp(b[1])
 	scalar rng = exp(b[2])
 	scalar err = exp(b[3])
 	series lambda = c_ + rng * x + err * lambda(-1)
 	params b
end mle --robust
matrix c = exp(b)
matrix V = $vcv .* (c*c') # delta method
matrix s = sqrt(diag(V))
matrix cs = c ~ s
string parnames = "C_,rng,err"
modelprint cs parnames
</hansl> 
-------------------------------------------------------
   Riccardo (Jack) Lucchetti
   Dipartimento di Scienze Economiche e Sociali (DiSES)
   Università Politecnica delle Marche
   (formerly known as Università di Ancona)
   r.lucchetti(a)univpm.it
   
http://www2.econ.univpm.it/servizi/hpp/lucchetti
-------------------------------------------------------