Hi,
first I've noticed a strange behavior with Jack's BNdecomp.gfn package
when I used the auto choice of AR/MA orders. But I think I've tracked
this down to what the $bic accessor gives with gretl's arima command.
(So I don't think this is a problem with BNdecomp, it just shows up there.)
Below is a complete example of what I mean. The $bic value for an
ARIMA(1,1,0) model --which is obviously just an AR(1) in first
differences-- is noticeably higher when gretl's "arima" command is used,
compared to what the manual AR(1) to the diffs gives me.
Notice that this difference flips around the ranking of the models; the
manual approach (and conventional wisdom) prefers to include the first
lag, while the $bic values from "arima" would point to the ARIMA(0,1,0)
model without lags. (And that's what may lead to strange results of the
BNdecomp auto choice.)
thanks,
sven
<example-comparison>
open AWM.gdt
set verbose off
series DY = diff(YER) # YER: real GDP
smpl 1975:1 1998:4
# manual ARIMA(1,1,0) on levels GDP via OLS:
ols DY const DY(-1) # highly significant first lag
bic_man110 = $bic
# comparison ARIMA(0,1,0) = ARMA(0,0)
ols DY const
bic_man010 = $bic
# gretl ARIMA(1,1,0)
arima 1 1 0; YER
bic_a110 = $bic
# comparison gretl ARIMA(0,1,0)
arima 0 1 0; YER
bic_a010 = $bic
print "---------- 1 1 0"
print bic_man110 # 1922.5920
print bic_a110 # 1929.7816
print "---------- 0 1 0"
print bic_man010 # 1923.8034
print bic_a010 # same (1923.8034)
</example-comparison>