Hi,
when I wanted to use lrvar() I discovered it's only for single series.
So I ported some code to gretl to estimate the long-run covariance
matrix for multivariate series (along with a helper function
autocovar()). I haven't tested it yet, probably some bugs remaining.
Actually I wanted to ask whether it would make sense to allow the
multivariate case in built-in lrvar()?
thanks,
sven
-----------
function matrix autocovar(matrix indatamat, int lag[0], bool demeaned[0])
/* computes the autocovariance at lag "lag" for a multivariate time
series
returns a NxN covariance matrix
*/
N = cols(indatamat)
T = rows(indatamat)
if demeaned=0
matrix datademeaned = cdemean(indatamat)
else
matrix datademeaned = indatamat
endif
matrix result = transp(datademeaned[lag+1:T,])*datademeaned[1:T-lag,]
matrix result /= T
return result
end function
function matrix longrunvar(matrix indatamat, bool demeaned[0], lagtrunc[4])
/* indatamat is a TxN time series matrix
Bartlett window
returns an NxN matrix (spectral density at frequency zero)
*/
N = cols(indatamat)
matrix result = zeros(N,N)
loop for tau=1..lagtrunc
matrix Gamma = autocovar(indatamat,tau,demeaned)
# positive and negative tau range together:
matrix result += (1 -tau/(lagtrunc+1)) * (Gamma+Gamma')
endloop
# add the tau=0 part:
matrix result += autocovar(indatamat,0,demeaned)
return result
end function
Show replies by date